首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
It is common in modern manufacturing to simultaneously monitor more than one process quality characteristic. In such a multivariate scenario, the monitoring of the covariance matrix, along with the mean vector, plays an important role in assessing whether a process stays in control or not. However, monitoring the covariance matrix is technically more difficult, especially when there is only one observation available in each subgroup, disabling the usual sample covariance matrix as an effective estimator. To monitor the covariance matrix with individual observations in Phase II stage, several exponentially weighted moving average (EWMA) control charts have been constructed based on the distance between the estimated process covariance matrix and its target value. In this paper, two new control charts are devised using the sum of the square roots of the absolute deviations and its combination with the sum of squared deviations. These distance-based control charts are compared via the simulation experiments on different simulated out-of-control covariance matrices with respect to the number of quality characteristics being monitored, the shift pattern, and the shift magnitude. The simulation results identify the control charts that perform relatively robust and show that these various control charts may have their respective merits on different out-of-control scenarios.  相似文献   

2.
A traditional approach to monitor both the location and the scale parameters of a quality characteristic is to use two separate control charts. These schemes have some difficulties in concurrent tracking and interpretation. To overcome these difficulties, some researchers have proposed schemes consisting of only one chart. However, none of these schemes is designed to work with individual observations. In this research, an exponentially weighted moving average (EWMA)‐based control chart that plots only one statistic at a time is proposed to simultaneously monitor the mean and variability with individual observations. The performance of the proposed scheme is compared with one of the two other existing combination charts by simulation. The results show that in general the proposed chart has a significantly better performance than the other combination charts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Recent research works have shown that control statistics based on squared deviation of observations from target have the ability to monitor variability in both univariate and multivariate processes. In the current research, the properties of the control statistic S t that has been proposed by Huwang et al. (J. Quality Technology 2007; 39 :258–278) are first reviewed and three new S t‐based multivariate schemes are then presented. Extensive simulation experiments are performed to compare the performances of the proposed schemes with those of the multivariate exponentially weighted mean squared deviation (MEWMS) and the L1‐norm distance of the MEWMS deviation from its expected value (MEWMSL1) charts. The results show that one of the proposed schemes outperforms the others in detecting shifts in correlation coefficients and another has the best general performance among the compared charts in detecting shifts in which at least one of the variances changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance | S | are its faster detection of process changes and its better diagnostic feature, that is, with the VMAX statistic it is easier to identify the out‐of‐control variable. We study the synthetic chart based on the VMAX statistic. The proposed chart is always more efficient than the chart based on the generalized variance | S |. An example is presented to illustrate the application of the proposed chart. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we consider the use of 3 attribute charts—the npxy, the npw and the Max D charts—to control the covariance matrix of bivariate processes. In comparison with the generalized variance |S| chart, the 3 attribute charts signal faster, with smaller samples, all kind of disturbances, except when the 2 variables are highly correlated. To compete with the VMAX chart, the Max D chart needs larger samples, but no more than twice bigger. An example illustrates the monitoring of the covariance matrix using the Max D and npw.  相似文献   

8.
9.
Residual‐based control charts for autocorrelated processes are known to be sensitive to time series modeling errors, which can seriously inflate the false alarm rate. This paper presents a design approach for a residual‐based exponentially weighted moving average (EWMA) chart that mitigates this problem by modifying the control limits based on the level of model uncertainty. Using a Bayesian analysis, we derive the approximate expected variance of the EWMA statistic, where the expectation is with respect to the posterior distribution of the unknown model parameters. The result is a relatively clean expression for the expected variance as a function of the estimated parameters and their covariance matrix. We use control limits proportional to the square root of the expected variance. We compare our approach to two other approaches for designing robust residual‐based EWMA charts and argue that our approach generally results in a more appropriate widening of the control limits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we propose 2 new exponentially weighted moving average (EWMA) control charts based on the moving average (MA) statistic and lnS2 to monitor the process mean and variability of a Weibull process with subgroups. The inverse error function is used to transform the Weibull‐distributed data to a standard normal distribution. The Markov chain approach is used to derive the average run length (ARL). Subsequently, the performances of the proposed charts with other existing control charts are provided. The comparison shows that the EWMA‐MA outperforms the and EWMA‐ control charts for monitoring the process mean of ARL values. The comparison also shows that the EWMA‐lnS2 outperforms the S2 and S2‐MA control charts for monitoring the process variability of ARL value. Two examples are used to illustrate the application of the proposed control charts.  相似文献   

12.
Use of Hotelling's T2 charts with high breakdown robust estimates to monitor multivariate individual observations are the recent trend in the control chart methodology. Vargas (J. Qual. Tech. 2003; 35: 367‐376) introduced Hotelling's T2 charts based on the minimum volume ellipsoid (MVE) and the minimum covariance determinant (MCD) estimates to identify outliers in Phase I data. Studies carried out by Jensen et al. (Qual. Rel. Eng. Int. 2007; 23: 615‐629) indicated that the performance of these charts heavily depends on the sample size, amount of outliers and the dimensionality of the Phase I data. Chenouri et al. (J. Qual. Tech. 2009; 41: 259‐271) recently proposed robust Hotelling's T2 control charts for monitoring Phase II data based on the reweighted MCD (RMCD) estimates of the mean vector and covariance matrix from Phase I. They showed that Phase II RMCD charts have better performance compared with Phase II standard Hotelling's T2 charts based on outlier free Phase I data, where the outlier free Phase I data were obtained by applying MCD and MVE T2 charts to historical data. Reweighted MVE (RMVE) and S‐estimators are two competitors of the RMCD estimators and it is a natural question whether the performance of Phase II Hotelling's T2 charts with RMCD and RMVE estimates exhibits similar pattern observed by Jensen et al. (Qual. Rel. Eng. Int. 2007; 23: 615‐629) in the case of MCD and MVE‐based Phase I Hotelling's T2 charts. In this paper, we conduct a comparative study to assess the performance of Hotelling's T2 charts with RMCD, RMVE and S‐estimators using large number of Monte Carlo simulations by considering different data scenarios. Our results are generally in favor of the RMCD‐based charts irrespective of sample size, outliers and dimensionality of Phase I data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for monitoring the covariance matrix of a multivariate process based on the dissimilarity index of 2 matrices. The proposed control chart essentially monitors the covariance matrix by comparing the individual eigenvalues of the estimated EWMA covariance matrix with those of the estimated covariance matrix from the in‐control (IC) phase I data. It is different from the conventional EWMA charts for monitoring the covariance matrix, which are either based on comparing the sum or product or both of the eigenvalues of the estimated EWMA covariance matrix with those of the IC covariance matrix. We compare the performance of the proposed chart with that of the best existing chart under the multivariate normal process. Furthermore, to prevent the control limit of the proposed EWMA chart developed using the limited IC phase I data from having extensively excessive false alarms, we use a bootstrap resampling method to adjust the control limit to guarantee that the proposed chart has the actual IC ARL(average run length) not less than the nominal level with a certain probability. Finally, we use an example to demonstrate the applicability and implementation of the proposed EWMA chart.  相似文献   

14.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

15.
Most multivariate control charts in the literature are designed to detect either mean or variation shifts rather than both. A simultaneous use of the Hotelling T 2 and |S| control charts has been proposed but the Hotelling T 2 reacts to mean shifts, dispersion changes, and changes of correlations among responses. The combination of two multivariate control charts into one chart sometimes loses the ability to provide detailed diagnostic information when a process is out-of-control. In this research a new multivariate control chart procedure based on exponentially weighted moving average (EWMA) statistics is proposed to monitor process mean and variance simultaneously to identify proper sources of variations. Two multivariate EWMA control charts using individual observations are proposed to achieve a quick detection of mean or variance shifts or both. Simulation studies show that the proposed charts are capable of identifying appropriate types of shifts in terms of correct detection percentages. A manufacturing example is used to demonstrate how the proposed charts can be properly set-up based on average run length values via simulations. In addition, correct detection rates of the proposed charts are explored.  相似文献   

16.
Research on the performance evaluation and the design of the Phase II EWMA control chart for monitoring the mean, when parameters are estimated, have mainly focused on the marginal in‐control average run‐length (ARLIN). Recent research has highlighted the high variability in the in‐control performance of these charts. This has led to the recommendation of studying of the conditional in‐control average run‐length (CARLIN) distribution. We study the performance and the design of the Phase II EWMA chart for the mean, using the CARLIN distribution and the exceedance probability criterion (EPC). The CARLIN distribution is approximated by the Markov Chain method and Monte Carlo simulations. Our results show that in‐order to design charts that guarantee a specified EPC, more Phase I data are needed than previously recommended in the literature. A method for adjusting the Phase II EWMA control chart limits, to achieve a specified EPC, for the available amount of data at hand, is presented. This method does not involve bootstrapping and produces results that are about the same as some existing results. Tables and graphs of the adjusted constants are provided. An in‐control and out‐of‐control performance evaluation of the adjusted limits EWMA chart is presented. Results show that, for moderate to large shifts, the performance of the adjusted limits EWMA chart is quite satisfactory. For small shifts, an in‐control and out‐of‐control performance tradeoff can be made to improve performance.  相似文献   

17.
Monitoring changes in the Weibull mean and variance simultaneously is of interest in quality control. The mean and variance of a Weibull process are determined by its shape and scale parameters. Most studies are focused on monitoring the Weibull scale parameter with fixed shape parameter or the Weibull shape parameter with fixed scale parameter. In this paper, we propose an exponentially weighted moving average chart based on the likelihood‐ratio test and an inverse error function called ELR chart to monitor changes in the Weibull mean and variance simultaneously. The simulation approach is used to derive the average run length. We compare our proposed chart with other existing control charts for 3 cases, including scale parameter changes with fixed shape parameter, shape parameter changes with fixed scale parameter, and both parameters changes. The results show that the ELR chart outperforms the other control charts in terms of average run length in most cases. Two numerical examples are used to illustrate the applications of the proposed control chart.  相似文献   

18.
The variable-dimension T2 control chart (VDT2 chart) was recently proposed for monitoring the mean of multivariate processes in which some of the quality variables are easy and inexpensive to measure while other variables require substantially more effort or expense. The chart requires most of the times that only the inexpensive variables be sampled, switching to sampling all the variables only when a warning is triggered. It has good ARL performance compared with the standard T2 chart, while significantly reducing the sampling cost. However, like the T2 chart, it has limited sensitivity to small and moderate mean shifts. To detect such shifts faster, we developed an exponentially weighted moving average (EWMA) version of the VDT2 chart, along with Markov chain models for ARL calculation, and software (made available) for optimizing the chart design. The optimization software, which is based on genetic algorithms, runs in Windows© and has a friendly user interface. The performance analysis shows the great gain in performance achieved by the incorporation of the EWMA procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号