首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high tumor uptake of ultrasmall near‐infrared quantum dots (QDs) attributed to the enhanced permeability and retention effect is reported. InAs/InP/ZnSe QDs coated by mercaptopropionic acid (MPA) exhibit an emission wavelength of about 800 nm (QD800‐MPA) with very small hydrodynamic diameter (<10 nm). Using 22B and LS174T tumor xenograft models, in vivo and ex vivo imaging studies show that QD800‐MPA is highly accumulated in the tumor area, which is very promising for tumor detection in living mice. The ex vivo elemental analysis (Indium) using inductively coupled plasma (ICP) spectrometry confirm the tumor uptake of QDs. The ICP data are consistent with the in vivo and ex vivo fluorescence imaging. Human serum albumin (HSA)‐coated QD800‐MPA nanoparticles (QD800‐MPA‐HSA) show reduced localization in mononuclear phagocytic system‐related organs over QD800‐MPA plausibly due to the low uptake of QD800‐MPA‐HSA in macrophage cells. QD800‐MPA‐HSA may have great potential for in vivo fluorescence imaging.  相似文献   

2.
MoS2 quantum dots (QDs)‐based white‐light‐emitting diodes (QD‐WLEDs) are designed, fabricated, and demonstrated. The highly luminescent, histidine‐doped MoS2 QDs synthesized by microwave induced fragmentation of 2D MoS2 nanoflakes possess a wide distribution of available electronic states as inferred from the pronounced excitation‐wavelength‐dependent emission properties. Notably, the histidine‐doped MoS2 QDs show a very strong emission intensity, which exceeds seven times of magnitude larger than that of pristine MoS2 QDs. The strongly enhanced emission is mainly attributed to nitrogen acceptor bound excitons and passivation of defects by histidine‐doping, which can enhance the radiative recombination drastically. The enabled electroluminescence (EL) spectra of the QD‐WLEDs with the main peak around 500 nm are found to be consistent with the photoluminescence spectra of the histidine‐doped MoS2 QDs. The enhanced intensity of EL spectra with the current increase shows the stability of histidine‐doped MoS2 based QD‐WLEDs. The typical EL spectrum of the novel QD‐WLEDs has a Commission Internationale de l'Eclairage chromaticity coordinate of (0.30, 0.36) exhibiting an intrinsic broadband white‐light emission. The unprecedented and low‐toxicity QD‐WLEDs based on a single light‐emitting material can serve as an excellent alternative for using transition metal dichalcogenides QDs as next generation optoelectronic devices.  相似文献   

3.
Effect of post-growth annealing on 10 layer stacked InAs/GaAs quantum dots (QDs) with InAlGaAs/GaAs combination capping layer grown by molecular beam epitaxy has been investigated. The QD heterostructure shows a low temperature (8 K) photoluminescence (PL) emission peak at 1267 nm. No frequency shift in the peak emission wavelength is seen even for annealing up to 700 °C which is desirable for laser devices requiring strict tolerances on operating wavelength. This is attributed to the simultaneous effect of the strain field, propagating from the seed layer to the active layer of the multilayer QD (MQD) and the indium atom gradient in the capping layer due to the presence of a quaternary InAlGaAs layer. Higher activation energy (of the order of ∼250 meV) even at 650 °C annealing temperature also signifies the stronger carrier confinement potential of the QDs. All these results demonstrate higher thermal stability of the emission peak of the devices using this QD structure.  相似文献   

4.
Copper indium sulfide (CIS) colloidal quantum dots (QDs) are a promising candidate for commercially viable QD‐based optical applications, for example as colloidal photocatalysts or in luminescent solar concentrators (LSCs). CIS QDs with good photoluminescence quantum yields (PLQYs) and tunable emission wavelength via size and composition control are previously reported. However, developing an understanding and control over the growth of electronically passivating inorganic shells would enable further improvements of the photophysical properties of CIS QDs. To improve the optical properties of CIS QDs, the focus is on the growth of inorganic shells via the popular metal‐carboxylate/alkane thiol decomposition reaction. 1) The role of Zn‐carboxylate and Zn‐thiolate on the formation of ZnS shells on Cu‐deficient CIS (CDCIS) QDs is studied, 2) this knowledge is leveraged to yield >90% PLQY CDCIS/ZnS core/shell QDs, and 3) a mechanism for ZnS shells grown from zinc‐carboxylate/alkane thiol decomposition is proposed.  相似文献   

5.
White light generation is achieved by single-step co-doping of copper and manganese into the robust ZnSe quantum dots (QDs) which were synthesised using a wet chemical route. Photoluminescence (PL) emission spectra revealed three peaks related to blue (ZnSe), green (copper related) and orange (manganese related). The PL spectra indicated no surface and/or trap state related emission. Photoluminescence excitation (PLE) measurements confirmed co-doping of copper and manganese in the same QD. PLE spectra recorded with emission wavelength fixed at copper and manganese showed a band edge at the same position, indicating the incorporation of both copper and manganese in the same QD. Time-resolved PL measurements suggest an atomic like nature of Mn and Cu in ZnSe QDs.  相似文献   

6.
We review the recent advances in the experimental and theoretical investigation of alloy distribution in semiconductor quantum dots (QDs). X-ray diffraction analysis, as well as wet chemical etching, represent two powerful techniques that are able to measure the alloy distribution inside the dots. From a theoretical point of view, determination of the alloy distribution follows from consideration of the thermodynamic quantities involved in the formation and stability of the QD: strain energy, surface energy, internal energy and entropy. Starting from the alloy distribution, the investigation of its role in influencing the electronic and optical properties of QDs is possible. Tight binding and ab initio calculation show the band structure of non-uniform alloyed Ge/Si and InAs/GaAs quantum dots. While for Ge/Si the indirect bandgap does not offer a strong photoluminescence spectra, direct-bandgap materials offer intense light emission, including the range for telecom applications (1.77–1.37 μm). Control of alloying inside the QDs allows for the tailoring of their band structure and photoluminescence spectra, where high alloy gradients induce a blue-shift of the spectra, compared to a more uniform composition.  相似文献   

7.
Concepts of lateral ordering of epitaxial semiconductor quantum dots (QDs) are for the first time transferred to hybrid nanostructures for active plasmonics. We review our recent research on the self-alignment of epitaxial nanocrystals of In and Ag on ordered one-dimensional In(Ga)As QD arrays and isolated QDs by molecular beam epitaxy. By changing the growth conditions the size and density of the metal nanocrystals are easily controlled and the surface plasmon resonance wavelength is tuned over a wide range in order to match the emission wavelength of the QDs. Photoluminescence measurements reveal large enhancement of the emitted light intensity due to plasmon enhanced emission and absorption down to the single QD level.  相似文献   

8.
We report on the growth of AlGaInP quantum dots (QDs) with Al contents between 0% and 10% on GaP substrate by gas-source molecular beam epitaxy and the investigation of their morphological and low temperature photoluminescence properties. These high areal density QDs show short wavelength emission between 575 and 612 nm depending on their composition. The authors interpret the QD emission as originating from indirect type-II transitions. This interpretation is supported by a single-band effective-mass model, which allows us to describe the role of differing barrier composition in the QD emission. Time-resolved photoluminescence measurements are performed and discussed with respect to the calculations.  相似文献   

9.
Uniform and ordered pyramidal zinc sulfide (ZnS) nanostructure arrays have been fabricated on the single walled carbon nanotube (SWNT) films by chemical vapor deposition without using any metal catalyst. Each ZnS pyramid has a 100 nm-sized base, a uniform length of 600 nm, and a sharp tip of 10 nm. The control of interspatial distance between ZnS nanostructures was achieved by creation of selective growth on the SWNTs in voids with the assistance of a close-packed silica particle monolayer as a template. Furthermore, this kind of morphology control of nanostructure arrays can play an important role for potential applications, such as high efficiency of field emission because of the strong correlation between shapes and functionalities of nanostructures.  相似文献   

10.
The capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been made on a Schottky Ti-ZnTe (p-type) diode containing CdTe self-assembled quantum dots (QD) and control diode without dots. The C-V curve of the QD diode exhibits a characteristic step associated with the QD states whereas the reference diode shows ordinary bulk behavior. A quasistatic model based on the self-consistent solution of the Poisson's equation is used to simulate the capacitance. By comparison of the calculated C-V curve with the experimental one, hole binding energy at the QD states is found to be equal about 0.12 eV. The results of DLTS measurements for the sample containing QDs reveal the presence of a low-temperature peak which is not observed for the control diode. Analysis of its behavior at different bias conditions leads to the conclusion that this peak may be related to the hole emission from the QD states to the ZnTe valence band. Its thermal activation energy obtained from related Arrhenius plot equals to 0.12 eV in accordance with the energy obtained from the Poisson's equation. Thus based on the C-V and DLTS studies it may be concluded that the thermal activation energy of holes from the QD states to the ZnTe valence band in the CdTe/ZnTe QD system is equal about 0.12 eV.  相似文献   

11.
We studied the luminescence behavior of different sized CdTe quantum dots (QDs) dispersed in liquid solution, close-packed films and layer-by-layer assembled films respectively. The changes of emission color from CdTe QDs in water droplets during the evaporation of solvent have been observed. The quenching of the emission from small dots accompanied by the enhancement of the emission from large dots indicate that Forster resonance energy transfer processes occur from donors (small dots) to acceptors (large dot) for CdTe QDs system. Excitation (PLE) spectra confirm that the changes of the luminescence were attributed to the resonance energy transfer between small and larger dots in a mixed QD system.  相似文献   

12.
All‐inorganic lead halide perovskite quantum dots (IHP QDs) have great potentials in photodetectors. However, the photoresponsivity is limited by the low charge transport efficiency of the IHP QD layers. High‐performance phototransistors based on IHP QDs hybridized with organic semiconductors (OSCs) are developed. The smooth surface of IHP QD layers ensures ordered packing of the OSC molecules above them. The OSCs significantly improve the transportation of the photoexcited charges, and the gate effect of the transistor structure significantly enhances the photoresponsivity while simultaneously maintaining high I photo/I dark ratio. The devices exhibit outstanding optoelectronic properties in terms of photoresponsivity (1.7 × 104 A W?1), detectivity (2.0 × 1014 Jones), external quantum efficiency (67000%), I photo/I dark ratio (8.1 × 104), and stability (100 d in air). The overall performances of our devices are superior to state‐of‐the‐art IHP photodetectors. The strategy utilized here is general and can be easily applied to many other perovskite photodetectors.  相似文献   

13.
Colloidal quantum dots (QDs) are a fascinating class of semiconducting nanocrystals, thanks to their optical properties tunable through size and composition, and simple synthesis methods. Recently, colloidal double‐emission QDs have been successfully applied as competitive optical temperature sensors, since they exhibit structure‐tunable double emission, temperature‐dependent photoluminescence, high quantum yield, and excellent photostability. Until now, QDs have been used as nanothermometers for in vivo biological thermal imaging, and thermal mapping in complex environments at the sub‐microscale to nanoscale range. In this Review, recent progress for QD‐based nanothermometers is highlighted and perspectives for future work are described.  相似文献   

14.
The in‐depth understanding of ions' generation and movement inside all‐inorganic perovskite quantum dots (CsPbBr3 QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br? ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive‐switching effects. Verified by field‐emission scanning electron microscopy as well as energy‐dispersive X‐ray spectroscopy analysis, the resistive switching behavior of CsPbBr3 QD‐based photonic resistive random‐access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr3 QD‐based RRAM with a p‐channel transistor, the novel application of an RRAM–gate field‐effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all‐inorganic perovskite QD‐based photonic resistive memory for successful logic application.  相似文献   

15.
Chen JF  Yu CC  Yang CH 《Nanotechnology》2008,19(49):495201
With the incorporation of nitrogen (N) into InAs quantum dots (QDs), the carrier distribution near the QD displays electron emissions from a localized N-induced defect state at 0.34?eV and a weak emission at 0.15?eV from the QD. This defect state causes drastic carrier depletion in the neighboring GaAs bottom layer near the QD, which can effectively suppress tunneling emission for the QD excited states. As a result, electrons escape from the QD ground state through thermal emission to near the GaAs conduction band, rather than through thermal emission to the QD first excited state and a subsequent tunneling to the GaAs conduction band, as observed in InAs QDs without N incorporation. Thermal annealing can weaken the defect emission and enhance the QD emission, suggesting a removal of the defect state and a recovery of carriers in the QD. Increasing annealing temperature can significantly decrease the emission time and energy of the QD emission, which is explained by a weakening of tunneling suppression due to the removal of the defect state.  相似文献   

16.
Engineered scaffold affinity proteins are used in many biological applications with the aim of replacing natural antibodies. Although their very small sizes are beneficial for multivalent nanoparticle conjugation and efficient Förster resonance energy transfer (FRET), the application of engineered affinity proteins in such nanobiosensing formats has been largely neglected. Here, it is shown that very small (≈6.5 kDa) histidine‐tagged albumin‐binding domain‐derived affinity proteins (ADAPTs) can efficiently self‐assemble to zwitterionic ligand–coated quantum dots (QDs). These ADAPT–QD conjugates are significantly smaller than QD‐conjugates based on IgG, Fab', or single‐domain antibodies. Immediate applicability by the quantification of the human epidermal growth factor receptor 2 (HER2) in serum‐containing samples using time‐gated Tb‐to‐QD FRET detection on the clinical benchtop immunoassay analyzer KRYPTOR is demonstrated here. Limits of detection down to 40 × 10?12m (≈8 ng mL?1) are in a relevant clinical concentration range and outperform previously tested assays with antibodies, antibody fragments, and nanobodies.  相似文献   

17.
We present a study of the growth, morphology and optical properties of Al(x)Ga(1-x-y)In(y)As quantum dots (QDs) for a wide range of Al and In concentrations (0≤x≤0.34 and 0.43≤y≤0.60). Short emission wavelengths between 660 and 940?nm and QD surface densities up to 1.1 × 10(11)?cm(-2) have been achieved. Our results show that by varying both the Al concentration and the In concentration an independent adjustment of strain and QD band gap is possible. This additional degree of freedom can be employed for tailoring AlGaInAs QDs with the desired emission wavelength, surface density and average size. AlGaInAs QDs thus offer new possibilities for future QD device design.  相似文献   

18.
Abstract

Observation-angle dependence of the spontaneous emission life-time of CdTe quantum dots (QDs) embedded in a pseudogap photonic crystal (PC) film has been demonstrated. Comparison of two PC films with different photonic band-gaps (PBGs) differentiates the PBG effect from the electronic and/or chemical interactions between CdTe QDs and the host medium. This lifetime modification of QDs by a PC with pseudogap can be very useful in applications for optoelectronic devices such as QD lasers and QD switches.  相似文献   

19.
Colloidal quantum dots (CQDs) are nanoscale building blocks for bottom‐up fabrication of semiconducting solids with tailorable properties beyond the possibilities of bulk materials. Achieving ordered, macroscopic crystal‐like assemblies has been in the focus of researchers for years, since it would allow exploitation of the quantum‐confinement‐based electronic properties with tunable dimensionality. Lead‐chalcogenide CQDs show especially strong tendencies to self‐organize into 2D superlattices with micrometer‐scale order, making the array fabrication fairly simple. However, most studies concentrate on the fundamentals of the assembly process, and none have investigated the electronic properties and their dependence on the nanoscale structure induced by different ligands. Here, it is discussed how different chemical treatments on the initial superlattices affect the nanostructure, the optical, and the electronic‐transport properties. Transistors with average two‐terminal electron mobilities of 13 cm2 V?1 s?1 and contactless mobility of 24 cm2 V?1 s?1 are obtained for small‐area superlattice field‐effect transistors. Such mobility values are the highest reported for CQD devices wherein the quantum confinement is substantially present and are comparable to those reported for heavy sintering. The considerable mobility with the simultaneous preservation of the optical bandgap displays the vast potential of colloidal QD superlattices for optoelectronic applications.  相似文献   

20.
Among the interests in the application of quantum dots (QDs), the bandgap tuning is of key importance in controlling their material properties. The bandgap of a QD can be adjusted by adopting a variety of different physicochemical methods. Herein, a novel way of the bandgap tuning is developed in an Ag2S‐based QD system by suitably quenching the transformation from monoclinic Ag2S to cubic Ag and by subsequently inducing a lattice‐distorted region of ≈1‐nm‐scale in a QD. The two distinct crystalline phases of Ag2S and Ag coexisting with the lattice‐distorted region are experimentally demonstrated by visually showing this remarkable coexistence in a QD. A new approach is presented to the bandgap tuning (2.51 to 1.64 eV) and enhancing optical properties by suitably tailoring the degree of the lattice‐distorted region in a QD. This conceptual method could pave a new way to utilizing quantum effects in various QD applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号