首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The charge transport through a single ruthenium atom clamped by two terpyridine hinges is investigated, both experimentally and theoretically. The metal‐bis(terpyridyl) core is equipped with rigid, conjugated linkers of para‐acetyl‐mercapto phenylacetylene to establish electrical contact in a two‐terminal configuration using Au electrodes. The structure of the [RuII( L )2](PF6)2 molecule is determined using single‐crystal X‐ray crystallography, which yields good agreement with calculations based on density functional theory (DFT). By means of the mechanically controllable break‐junction technique, current–voltage (IV), characteristics of [RuII( L )2](PF6)2 are acquired on a single‐molecule level under ultra‐high vacuum (UHV) conditions at various temperatures. These results are compared to ab initio transport calculations based on DFT. The simulations show that the cardan‐joint structural element of the molecule controls the magnitude of the current. Moreover, the fluctuations in the cardan angle leave the positions of steps in the IV curve largely invariant. As a consequence, the experimental IV characteristics exhibit lowest‐unoccupied‐molecular‐orbit‐based conductance peaks at particular voltages, which are also found to be temperature independent.  相似文献   

2.
An inorganic nano light‐emitting transistor (INLET) consisting of p‐type porous Si nanowires (PoSiNWs) and an n‐type ZnO nanofilm was integrated on a heavily doped p‐type Si substrate with a thermally grown SiO2 layer. To verify that modulation of the Fermi level of the PoSiNWs is key for switchable light emitting, I–V and electroluminescent characteristics of the INLET are investigated as a function of gate bias (V g). As the V g is changed from 0 V to ?20 V, the current level and light‐emission intensity in the orange–red range increase by three and two times, respectively, with a forward bias of 20 V in the p–n junction, compared to those at a V g of 0 V. On the other hand, as the V g approaches 10 V, the current level decreases and the emission intensity is reduced and then finally switched off. This result arises from the modulation of the Fermi level of the PoSiNWs and the built‐in potential at the p–n junction by the applied gate electric field.  相似文献   

3.
Purely organic electroluminescent materials, such as thermally activated delayed fluorescent (TADF) and triplet–triplet annihilation (TTA) materials, basically harness triplet excitons from the lowest triplet excited state (T1) to realize high efficiency. Here, a fluorescent material that can convert triplet excitons into singlet excitons from the high‐lying excited state (T2), referred to here as a “hot exciton” path, is reported. The energy levels of this compound are determined from the sensitization and nanosecond transient absorption spectroscopy measurements, i.e., small splitting energy between S1 and T2 and rather large T2–T1 energy gap, which are expected to impede the internal conversion (IC) from T2 to T1 and facilitate the reverse intersystem crossing from the high‐lying triplet state (hRISC). Through sensitizing the T2 state with ketones, the existence of the hRISC process with an ns‐scale delayed lifetime is confirmed. Benefiting from this fast triplet–singlet conversion, the nondoped device based on this “hot exciton” material reaches a maximum external quantum efficiency exceeding 10%, with a small efficiency roll‐off and CIE coordinates of (0.15, 0.13). These results reveal that the “hot exciton” path is a promising way to exploit high efficient, stable fluorescent emitters, especially for the pure‐blue and deep‐blue fluorescent organic light‐emitting devices.  相似文献   

4.
Four low‐cost copolymer donors of poly(thiophene‐quinoxaline) (PTQ) derivatives are demonstrated with different fluorine substitution forms to investigate the effect of fluorination forms on charge separation and voltage loss (Vloss) of the polymer solar cells (PSCs) with the PTQ derivatives as donor and a A–DA'D–A‐structured molecule Y6 as acceptor. The four PTQ derivatives are PTQ7 without fluorination, PTQ8 with bifluorine substituents on its thiophene D‐unit, PTQ9, and PTQ10 with monofluorine and bifluorine substituents on their quinoxaline A‐unit respectively. The PTQ8‐ based PSC demonstrates a low power conversion efficiency (PCE) of 0.90% due to the mismatch in the highest occupied molecular orbital (HOMO) energy levels alignment between the donor and acceptor. In contrast, the devices based on PTQ9 and PTQ10 show enhanced charge‐separation behavior and gradually reduced Vloss, due to the gradually reduced nonradiative recombination loss in comparison with the PTQ7‐based device. As a result, the PTQ10‐based PSC demonstrates an impressive PCE of 16.21% with high open‐circuit voltage and large short‐circuit current density simultaneously, and its Vloss is reduced to 0.549 V. The results indicate that rational fluorination of the polymer donors is a feasible method to achieve fast charge separation and low Vloss simultaneously in the PSCs.  相似文献   

5.
A modified liquid method is employed to grow an ultralarge 6,13‐bis(triisopropylsilylethynyl)pentacene crystal, ensuring fabrication and measurements of the two terminal devices. The hole transport mechanism is studied by analyzing the space charge limited currents (SCLCs) at various temperatures. Modified SCLC theory with a small polaron hopping model is developed and employed to successfully simulate the IV curves. Values of effective hopping distance, transfer integral, and reorganization energy are extracted and reasonably discussed. A scenario is suggested that hopping transport takes place from one molecule to its nearest neighbor along the c‐axis, with every molecule acting as a trapping center.  相似文献   

6.
Multivalued logic (MVL) computing could provide bit density beyond that of Boolean logic. Unlike conventional transistors, heterojunction transistors (H‐TRs) exhibit negative transconductance (NTC) regions. Using the NTC characteristics of H‐TRs, ternary inverters have recently been demonstrated. However, they have shown incomplete inverter characteristics; the output voltage (VOUT) does not fully swing from VDD to GND. A new H‐TR device structure that consists of a dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]thiophene (DNTT) layer stacked on a PTCDI‐C13 layer is presented. Due to the continuous DNTT layer from source to drain, the proposed device exhibits novel switching behavior: p‐type off/p‐type subthreshold region /NTC/ p‐type on. As a result, it has a very high on/off current ratio (≈105) and exhibits NTC behavior. It is also demonstrated that an array of 36 of these H‐TRs have 100% yield, a uniform on/off current ratio, and uniform NTC characteristics. Furthermore, the proposed ternary inverter exhibits full VDD‐to‐GND swing of VOUT with three distinct logic states. The proposed transistors and inverters exhibit hysteresis‐free operation due to the use of a hydrophobic gate dielectric and encapsulating layers. Based on this, the transient operation of a ternary inverter circuit is demonstrated for the first time.  相似文献   

7.
Here, a pair of A1–D–A2–D–A1 unfused ring core‐based nonfullerene small molecule acceptors (NF‐SMAs), BO2FIDT‐4Cl and BT2FIDT‐4Cl is synthesized, which possess the same terminals (A1) and indacenodithiophene unit (D), coupling with different fluorinated electron‐deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2). BT2FIDT‐4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT‐4Cl . The polymer solar cells (PSCs) based on BT2FIDT‐4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT‐4Cl ‐based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap‐assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT‐4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF‐SMA‐based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron‐deficient central unit is an effective approach to construct highly efficient unfused ring NF‐SMAs to boost PCE and Voc simultaneously.  相似文献   

8.
Next‐generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs‐filled polyaniline device layer by “electro‐typing” under a voltage pulse (VET, from ±1 to ±7 V), which is applied to the device layer through a localized charge‐injection method. The core idea of this device is to make an electrical image through the charge trapping mechanism, which can be “read” further by the subsequent electrical mapping. The density of stored charges at the carbon–polyaniline layer, near the metal/polymer interface, is found to depend on the voltage amplitude, i.e., the number of injected charge carriers. The relaxation of the stored charges is studied by different probe voltages and for different devices, depending on the percolation of the CNPs into the PANI. The polymeric data sheet retains the recorded data for more than 6 h, which can be refreshed or erased at will. Also, a write–read–erase–read cycle is performed for the smallest “bit” of stored information through a single contact between the probe and the device layer.  相似文献   

9.
Reproducible molecular junctions can be integrated within standard CMOS technology. Metal–molecule–semiconductor junctions are fabricated by direct Si–C binding of hexadecane or methyl‐styrene onto oxide‐free H‐Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n‐Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium‐doped n‐Si, the molecular tunneling barrier can be separated from the Si‐Schottky one, which is a 0.47 eV, in agreement with the molecular‐modified surface dipole and quite different from the bare Si–H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si‐based molecular electronics.  相似文献   

10.
The molecular dipole moment plays a significant role in governing important phenomena like molecular interactions, molecular configuration, and charge transfer, which are important in several electronic, electrochemical, and optoelectronic systems. Here, the effect of the change in the dipole moment of a tethered molecule on the carrier properties of (functionalized) trilayer graphene—a stack of three layers of sp2‐hybridized carbon atoms—is demonstrated. It is shown that, due to the high carrier confinement and large quantum capacitance, the trans‐to‐cis isomerisation of ‘covalently attached’ azobenzene molecules, with a change in dipole moment of 3D, leads to the generation of a high effective gating voltage. Consequently, 6 units of holes are produced per azobenzene molecule (hole density increases by 440 000 holes μm?2). Based on Raman and X‐ray photoelectron spectroscopy data, a model is outlined for outer‐layer, azobenzene‐functionalized trilayer graphene with current modulation in the inner sp2 matrix. Here, 0.097 V are applied by the isomerisation of the functionalized azobenzene. Further, the large measured quantum capacitance of 72.5 μF cm?2 justifies the large Dirac point in the heavily doped system. The mechanism defining the effect of dipole modulation of covalently tethered molecules on graphene will enable future sensors and molecular‐machine interfaces with graphene.  相似文献   

11.
Exposed facets of n‐type silicon nanowires (Si NWs) fabricated by a top‐down approach are successfully terminated with different organic functionalities, including 1,3‐dioxan‐2‐ethyl, butyl, allyl, and propyl‐alcohol, using a two‐step chlorination/alkylation method. X‐ray photoemission spectroscopy and spectroscopic ellipsometry establish the bonding and the coverage of these molecular layers. Field‐effect transistors fabricated from these Si NWs displayed characteristics that depended critically on the type of molecular termination. Without molecules the source–drain conduction is unable to be turned off by negative gate voltages as large as ?20 V. Upon adsorption of organic molecules there is an observed increase in the “on” current at large positive gate voltages and also a reduction, by several orders of magnitude, of the “off” current at large negative gate voltages. The zero‐gate voltage transconductance of molecule‐terminated Si NW correlates with the type of organic molecule. Adsorption of butyl and 1,3‐dioxan‐2‐ethyl molecules improves the channel conductance over that of the original SiO2? Si NW, while adsorption of molecules with propyl‐alcohol leads to a reduction. It is shown that a simple assumption based on the possible creation of surface states alongside the attachment of molecules may lead to a qualitative explanation of these electrical characteristics. The possibility and potential implications of modifying semiconductor devices by tuning the distribution of surface states via the functionality of attached molecules are discussed.  相似文献   

12.
Efficient wide‐bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky–Queisser limit, but they suffer from a larger open circuit voltage (VOC) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene‐C60 bisadduct (ICBA) with higher‐lying lowest‐unoccupied‐molecular‐orbital is needed for WBG perovskite solar cells, while its energy‐disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA‐tran3 from the as‐synthesized ICBA‐mixture. WBG perovskite solar cells with ICBA‐tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels.  相似文献   

13.
Here, room‐temperature solution‐processed inorganic p‐type copper iodide (CuI) thin‐film transistors (TFTs) are reported for the first time. The spin‐coated 5 nm thick CuI film has average hole mobility (µFE) of 0.44 cm2 V?1 s?1 and on/off current ratio of 5 × 102. Furthermore, µFE increases to 1.93 cm2 V?1 s?1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2. Transparent complementary inverters composed of p‐type CuI and n‐type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution‐processed inorganic p‐type semiconductor inks and related electronics.  相似文献   

14.
The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec?1 at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2 van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2 vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2 as the channel, the SnSe/MoS2 vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltage VP of ?0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec?1 and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.  相似文献   

15.
Among all typical transition‐metal dichalcogenides (TMDs), the bandgap of α‐MoTe2 is smallest and is close to that of conventional 3D Si. The properties of α‐MoTe2 make it a favorable candidate for future electronic devices. Even though there are a few reports regarding fabrication of complementary metal–oxide‐semiconductor (CMOS) inverters or p–n junction by controlling the charge‐carrier polarity of TMDs, the fabrication process is complicated. Here, a straightforward selective doping technique is demonstrated to fabricate a 2D p–n junction diode and CMOS inverter on a single α‐MoTe2 nanoflake. The n‐doped channel of a single α‐MoTe2 nanoflake is selectively converted to a p‐doped region via laser‐irradiation‐induced MoOx doping. The homogeneous 2D MoTe2 CMOS inverter has a high DC voltage gain of 28, desirable noise margin (NMH = 0.52 VDD, NML = 0.40 VDD), and an AC gain of 4 at 10 kHz. The results show that the doping technique by laser scan can be potentially used for future larger‐scale MoTe2 CMOS circuits.  相似文献   

16.
1.5–1.6 eV bandgap Pb-based perovskite solar cells (PSCs) with 30–31% theoretical efficiency limit by the Shockley–Queisser model achieve 21–24% power conversion efficiencies (PCEs). However, the best PCEs of reported ideal-bandgap (1.3–1.4 eV) Sn–Pb PSCs with a higher 33% theoretical efficiency limit are <18%, mainly because of their large open-circuit voltage (Voc) deficits (>0.4 V). Herein, it is found that the addition of guanidinium bromide (GABr) can significantly improve the structural and photoelectric characteristics of ideal-bandgap (≈1.34 eV) Sn–Pb perovskite films. GABr introduced in the perovskite films can efficiently reduce the high defect density caused by Sn2+ oxidation in the perovskite, which is favorable for facilitating hole transport, decreasing charge-carrier recombination, and reducing the Voc deficit. Therefore, the best PCE of 20.63% with a certificated efficiency of 19.8% is achieved in 1.35 eV PSCs, along with a record small Voc deficit of 0.33 V, which is the highest PCE among all values reported to date for ideal-bandgap Sn–Pb PSCs. Moreover, the GABr-modified PSCs exhibit significantly improved environmental and thermal stability. This work represents a noteworthy step toward the fabrication of efficient and stable ideal-bandgap PSCs.  相似文献   

17.
In recent past, for next‐generation device opportunities such as sub‐10 nm channel field‐effect transistors (FETs), tunneling FETs, and high‐end display backplanes, tremendous research on multilayered molybdenum disulfide (MoS2) among transition metal dichalcogenides has been actively performed. However, nonavailability on a matured threshold voltage control scheme, like a substitutional doping in Si technology, has been plagued for the prosperity of 2D materials in electronics. Herein, an adjustment scheme for threshold voltage of MoS2 FETs by using self‐assembled monolayer treatment via octadecyltrichlorosilane is proposed and demonstrated to show MoS2 FETs in an enhancement mode with preservation of electrical parameters such as field‐effect mobility, subthreshold swing, and current on–off ratio. Furthermore, the mechanisms for threshold voltage adjustment are systematically studied by using atomic force microscopy, Raman, temperature‐dependent electrical characterization, etc. For validation of effects of threshold voltage engineering on MoS2 FETs, full swing inverters, comprising enhancement mode drivers and depletion mode loads are perfectly demonstrated with a maximum gain of 18.2 and a noise margin of ≈45% of 1/2 VDD. More impressively, quantum dot light‐emitting diodes, driven by enhancement mode MoS2 FETs, stably demonstrate 120 cd m?2 at the gate‐to‐source voltage of 5 V, exhibiting promising opportunities for future display application.  相似文献   

18.
Thin insulating layers are used to modulate a depletion region at the source of a thin‐film transistor. Bottom contact, staggered‐electrode indium gallium zinc oxide transistors with a 3 nm Al2O3 layer between the semiconductor and Ni source/drain contacts, show behaviors typical of source‐gated transistors (SGTs): low saturation voltage (VD_SAT ≈ 3 V), change in VD_SAT with a gate voltage of only 0.12 V V?1, and flat saturated output characteristics (small dependence of drain current on drain voltage). The transistors show high tolerance to geometry: the saturated current changes only 0.15× for 2–50 µm channels and 2× for 9‐45 µm source‐gate overlaps. A higher than expected (5×) increase in drain current for a 30 K change in temperature, similar to Schottky‐contact SGTs, underlines a more complex device operation than previously theorized. Optimization for increasing intrinsic gain and reducing temperature effects is discussed. These devices complete the portfolio of contact‐controlled transistors, comprising devices with Schottky contacts, bulk barrier, or heterojunctions, and now, tunneling insulating layers. The findings should also apply to nanowire transistors, leading to new low‐power, robust design approaches as large‐scale fabrication techniques with sub‐nanometer control mature.  相似文献   

19.

Modification of interface properties in Pt/n-InP Schottky contacts with atomic layer deposited ZnO interlayer (IL) (5 and 10 nm) has been carried out and the electrical properties were investigated using current–voltage (IV) and capacitance–voltage (CV) techniques. The insertion of ZnO IL in the Pt/n-InP interface reduced the effective barrier height. The barrier heights from CV method were higher with respect to those from IV method. The interface state density for 5 nm thick ZnO was higher than that for 10 nm thick ZnO. The barrier heights according to thermionic field emission model showed much closer to those from CV method. Surface passivation and interfacial dipole were suggested to modulate the Schottky barrier at the Pt/ZnO/n-InP interface.

  相似文献   

20.
Source–semiconductor–drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next‐generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross‐talk among different devices, and simplify the fabrication process of circuits. Here, a one‐step, drop‐casting‐like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3‐hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor–insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor–insulator bilayer structure is an ideal system for injecting charges into the insulator via gate‐stress, and the thus‐formed PS electret layer acts as a “nonuniform floating gate” to tune the threshold voltage and effective mobility of the transistors. Effective field‐effect mobility higher than 1 cm2 V?1 s?1 with an on/off ratio > 107 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号