首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of perlite using nano-magnetic iron oxide was implemented to produce nano-magneticFe3O4-coated perlite composite (Fe3O4/Perlite). The prepared composite was characterized using Scanning Electron Microscopy, Fourier-Transform Infrared spectroscopy and Powder X-ray Fluorescence. The potentiality of both perlite and Fe3O4/Perlite composite to eliminate Cr(VI) from the environmentally relevant water was investigated. The influence of main factors which could affect the adsorption was studied including; pH of medium, shaking time and Cr(VI) ions concentration. The experimental outcome demonstrated that the modification of perlite by nano-magnetic Fe3O4 showed a significantly enhanced Cr(VI) removal efficiency relative to that of unmodified perlite. From the kinetic studies, the experimental data fitted well with the pseudo-second-order model. Moreover, it proposes that Langmuir isotherm is more adequate than the Freundlich isotherm for both perlite and modified perlite. The results recommended that Fe3O4/Perlite composite had a great potential as an economic and efficient adsorbent of Cr(VI) from contaminated water, which has huge application potential.  相似文献   

2.
Fe3O4 coated glycine doped polypyrrole magnetic nanocomposite (Fe3O4@gly-PPy NC) was prepared via coating of suspended Fe3O4 nanoparticles with gly-PPy. FE-SEM and HR-TEM images indicated that Fe3O4 nanoparticles were encapsulated by precipitating gly-PPy moieties. Chromium(VI) adsorption followed a Langmuir isotherm with maximum capacity of 238–303 mg/g for a temperature range of 25–45 °C at pH 2. The adsorption process was governed by the ionic interaction and the reduction of Cr(VI) to Cr(III) by the PPy moiety. Results showed that NCs are effective adsorbents for the removal of Cr(VI) from wastewater and can be separated by external magnetic field from the reactor.  相似文献   

3.
Nanocomposites of polyaniline with iron oxide (PANI-Fe3O4) and copper ferrite (PANI-CuFe2O4) were prepared and characterized by FTIR, HRTEM, XRD and FESEM. HRTEM images reveals that the main size distributions are located in the range between 25–34 and 22–28 nm in case of PANI-CuFe2O4 and PANI-Fe3O4 nanocomposites, respectively. The dielectric constant value for PANI-Fe3O4 nanocomposites reaches a maximum value as high as ~7000 (102 Hz), while the same for PANI-CuFe2O4 composite attains a maximum value of ~2600 at 102 Hz. A quantitative estimation of the contribution of the grain boundary and resistance parameters has been attempted in terms of Maxwell-Wagner two-layered model.  相似文献   

4.
A facile eco-friendly hydrothermal route(180 °C, 12.0 h) has been developed for the first time to the uniform hierarchical porous MgBO_2(OH) microspheres without the aid of any organic additive, surfactant or template, by using the abundant MgCl_2·6 H_2 O, H_3BO_3 and NaOH as the raw materials. The as-obtained porous microspheres exhibit a specific surface area of 94.752 mg·g~(-1), pore volume of 0.814 cm3·g~(-1), and ca. 84.0% of which have a diameter of 2.25–3.40 μm. The thermal decomposition of the porous MgBO_2(OH) microspheres(650 °C,2.5 °C·min~(-1)) leads to the porous Mg_2B_2O_5 microspheres with well-retained morphology. When utilized as the adsorbents for the removal of CR from mimic waste water, the present porous MgBO_2(OH) microspheres exhibit satisfactory adsorption capacity, with the maximum adsorption capacity q~(-1) mof 309.1 mg·g, much higher than that derived from most of the referenced adsorbents. This opens a new window for the facile green hydrothermal synthesis of the hierarchical porous MgBO_2(OH) microspheres, and extends the potential application of the 3 D hierarchical porous metal borates as high-efficiency adsorbents for organic dyes removal.  相似文献   

5.
《Ceramics International》2020,46(11):18851-18858
An asymmetric spinel-spinel supercapacitor is fabricated with negative and positive electrodes respectively consisting of Fe3O4 and Mn3O4 nanoparticles, where carbon nanotubes (CNT) serve as conductive additives. High performance of the individual electrodes and devices is achieved at a high active mass (AM) loading of 40 mg cm−2 of the individual electrodes. We implement a conceptually new strategy using multifunctional Celestine blue (CB) dye, which is strongly adsorbed on the spinel phases and CNT, facilitates dispersion, acts as a capping agent and allows for the fabrication of spinel decorated CNT. CB is an efficient charge transfer mediator, which allows for significant improvement of capacitive behavior. The use of CB as a charge transfer mediator allows for good utilization of capacitive properties of spinels at high AM. Mechanisms of spinel-CB-CNT interactions and charge transfer mediation are discussed. The capacitive properties of electrodes with different spinel/CNT mass ratios are tested by cyclic voltammetry, chronopotentiometry and impedance spectroscopy. The areal capacitances of 6.17 and 5.15 F cm−2 are obtained for Fe3O4 and Mn3O4 based electrodes, respectively in 0.5 M Na2SO4 electrolyte. The high capacitances are achieved for the electrodes that have low resistance. Using these electrodes, an asymmetric device is fabricated that has a capacitance of 2.41 F cm−2 in a voltage window of 1.6 V.  相似文献   

6.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

7.
以FeSiAl片状磁粉、膨胀石墨为主要原料,采用水热法制备石墨烯/Fe_3O_4/FeSiAl复合材料。通过XRD、SEM、Raman、FTIR和矢量网络分析仪(VNA)对石墨烯/Fe_3O_4/FeSiAl复合材料的晶相、微观形貌和吸波性能进行了表征和分析。结果表明:通过水热还原法,将氧化石墨烯还原成石墨烯,并且生成的石墨烯及Fe_3O_4颗粒均匀包覆在FeSiAl片状磁粉上,这种片状和颗粒状不同结构的复合,制备出了兼具磁损耗和介电损耗的吸波材料。在0.2~2.66 GHz频段内,当氧化石墨烯和FeSiAl质量比为1∶9,相应匹配厚度为2 mm时,石墨烯/Fe_3O_4/FeSiAl复合材料在2.56 GHz处最小反射率可达到–17 dB,其有效吸收频带范围(反射率小于–10 dB)为2.27~2.66 GHz。随着氧化石墨烯与FeSiAl质量比的增加,石墨烯/Fe_3O_4/FeSiAl复合材料的有效吸收频带向高频移动,有助于该吸波材料在高频段的应用。  相似文献   

8.
Hydrophobic magnesium hydroxide (MH) nanoparticles were prepared by a one-step synthesis method in a high-gravity environment generated by a novel impinging stream-rotating packed bed (IS-RPB) reactor. The reactant solutions were simultaneously and continuously pumped into the IS-RPB reactor, and then Tween 80 was added as a surface modifier. The morphology, structure, and properties of blank and hydrophobic MH were characterized. The effects of MH nanoparticles on the flame retardancy, thermal stability, and mechanical properties of PP/MH composites were also studied. We found that the obtained MH nanoparticles exhibited hexagonal lamella with a mean size of 30 nm, excellent hydrophobic properties (e.g., high water contact angle of 112°), and improved thermal stability of MH. The limiting oxygen index (LOI) further showed that increased MH loading can significantly improve flame-retardant performance, which reached 29.3% for PP/MH composites with 30 wt% hydrophobic samples. The thermal stability and mechanical properties of the PP/MH composites with hydrophobic samples were also much higher than those of PP/MH composites with blank MH. Results showed that the one-step synthesis had high potential application in the large-scale production of hydrophobic MH nanoparticles.  相似文献   

9.
Construction of heterojunctions with matching energy band structures between two semiconductors displays great potential in promoting the separation and transfer of photogenerated charge carriers and is one of the effective strategies for obtaining high active photocatalysts. In this study, a type-II heterojunction photocatalyst was designed and prepared using Bi2Fe4O9 (BFO) nanoparticles and hydrothermal-treated red phosphorus (HRP). The photocatalytic performance test exhibited that the 3%BFO/HRP composite photocatalyst with 3% mass fraction of BFO rapidly and efficiently photoreduced Cr(VI), and the reduction was completed within 25 min, with a rate constant of 0.15 min−1, which was 15 times higher than that of pure HRP. Further mechanistic investigation revealed that the photocatalytic activity was enhanced due to the tight heterojunction between BFO and HRP, thereby effectively promoting carrier transfer, destroying the carrier recombination, and reducing the charge-transfer resistance of composite catalyst. Mott–Schottky diagrams and UV-vis diffuse reflectance spectroscopy data indicated the theoretical feasibility of establishing a close contact between BFO and HRP. X-ray photoelectron spectroscopy provided evidence for the way in which interfacial charges were transferred. This work provides a new possibility to construct heterojunction photocatalysts for the rapid and efficient reduction of Cr(VI).  相似文献   

10.
《Ceramics International》2016,42(15):16499-16504
Monoclinic KLa(MoO4)2:Eu3+ microarchitectures with different morphologies were synthesized by an EDTA-assisted hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR) and photoluminescence (PL) spectrometer. It was found that the amounts of EDTA and the pH values of precursor solution have crucial influences on the structure, morphology and size of the obtained samples, respectively. Under 270 nm excitation, Eu3+ doped KLa(MoO4)2 samples showed red emission centered at 618 nm which attributed to 5D07F2 transition of Eu3+. The dependence of luminescence intensity on different morphologies were discussed in detailed. With further annealing treatment, the emission intensities of peanut-like samples increased amazingly. Moreover, the lifetime of the annealed samples were calculated. The significantly enhanced photoluminescence performances indicate that the as-annealed samples are promising phosphors which can be used for white light-emitting diodes (WLEDs).  相似文献   

11.
《Ceramics International》2016,42(14):15585-15591
(x)Ni0.4Zn0.6Fe2O4+(1−x)Ba0.6Sr0.4TiO3 composite ceramics with x=0.6, 0.7, 0.8, 0.9 and 1 were synthesized by solid state reaction method. The high dense composites have only two phases, i.e., Ni0.4Zn0.6Fe2O4 and Ba0.6Sr0.4TiO3. The permittivity ε′ of the composites decreases slightly with the frequency increasing from 3 MHz to 1 GHz. The permittivity ε′′ of the composites also shows a little increase with frequency in the 3 MHz–1 GHz range. The permeability displays a relaxation resonance within the 3 MHz–1 GHz frequency range. The permeability μ′ increases while the cut-off frequency decreases with the Ni0.4Zn0.6Fe2O4 concentration, obeying the Snoek's law μifr=constant. The permittivity ε′ of the composites decreases with Ni0.4Zn0.6Fe2O4 concentration. The composites have a relatively higher ε′ than the pure Ni0.4Zn0.6Fe2O4 at 1–10 GHz. In the frequency range of 1–10 GHz, the magnetic permeability μ′ reaches its maximum and μ′′ shows a minimum for the composite with x=0.6 in all ceramics. The permeability μ′ of the composites decreases with dc magnetic field at 1–10 GHz. The permeability shows a domain wall resonance, and the resonance frequency shifts to high frequency with the dc magnetic field. The permittivity was also influenced by the dc magnetic field due to a magnetodielectric effect.  相似文献   

12.
《Ceramics International》2023,49(8):11885-11892
High-entropy oxide (HEO) has recently become popular because of its unique multifunctional performance. In this study, we developed a novel microwave-assisted method for the production of HEO nanoparticles with the composition (Cr0.2Fe0.2Mn0.2Co0.2-xNi0.2Znx)3O4 (x = 0, 0.05, 0.1, and 0.2). The results revealed that all metallic elements were uniformly distributed throughout the single-phase cubic spinel structure of the HEO nanoparticles. The particle size distributions of four fabricated samples ranged from 10 to 50 nm. Because of its numerous advantages such as the ultrafast and low-temperature fabrication of nanoscale and high-purity products at a relatively low cost, the suggested methodology is an excellent synthesis method. The original HEO spinel (x = 0) achieved saturated magnetization (Ms) and coercivity (Hc) values of 24.3 emu/g and 160 Oe, respectively, at room temperature. Zinc substitution in the HEO composition indicated that Ms and Hc decreased with increasing zinc concentration owing to its non-magnetic nature.  相似文献   

13.
六价铬(Cr(VI))因其高毒性受到人们广泛关注,为提高吸附法去除Cr(VI)的效率,合成了一种新型核壳结构的聚乙烯亚胺(PEI)功能化复合纳米颗粒(Fe3O4@SiO2–NH2),用于去除水中Cr(VI).研究了磁性纳米颗粒的化学结构、形貌和磁性特性.考察了初始浓度、吸附时间、溶液pH值和无机阴离子对Cr(VI)吸附...  相似文献   

14.
A novel Fe2O3-MoS2 nanocomposite was synthesized directly via the solvothermal method. Scanning electron microscopy (SEM) results showed the as-prepared Fe2O3-MoS2 had a uniform 3D blooming flower-like nanostructure with a MoS2 substrate. The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirmed the Fe2O3 nanostructures were well-dispersed on the surface of the layered MoS2. The elemental mapping results revealed Fe, O, Mo and S elements coexisted in the Fe2O3-MoS2 nanocomposite. X-ray photoelectron spectroscopy (XPS) results displayed an S-rich MoS2 structure had been formed in the Fe2O3-MoS2 nanocomposite. As expected, the S-rich Fe2O3-MoS2 nanocomposite had better photocatalytic performance on Cr(VI) reduction than that of bare Fe2O3, MoS2 and TiO2 P25.  相似文献   

15.
16.
《Ceramics International》2016,42(3):4228-4237
L-cysteine functionalized Fe3O4 magnetic nanoparticles (Cys–Fe3O4 MNPs) were continuously fabricated by a simple high-gravity reactive precipitation method combined with surface modification through a novel impinging stream-rotating packed bed with the assistance of sonication. The obtained Cys–Fe3O4 MNPs was characterized by XRD, TEM, FTIR, TGA and VSM, and further used for the removal of heavy metal ions from aqueous solution. The influence of pH values, contact time and initial metal concentration on the adsorption efficiency were investigated. The results revealed that the adsorption of Pb(II) and Cd(II) were pH dependent process, and the pH 6.0 was found to be optimum condition. Moreover, the adsorption kinetic for Cys–Fe3O4 MNPs followed the mechanism of the pseudo-second order kinetic model, and their equilibrium data were fitted with the Langmuir isothermal model well. The maximum adsorption capacities calculated from Langmuir equation were 183.5 and 64.35 mg g−1 for Pb(II) and Cd(II) at pH 6.0, respectively. Furthermore, the adsorption and regeneration experiment showed there was about 10% loss in the adsorption capacity of the as-prepared Cys–Fe3O4 MNPs for heavy metal ions after 5 times reuse. All the above results provided a potential method for continuously preparing recyclable adsorbent applied in removing toxic metal ions from wastewater through the technology of process intensification.  相似文献   

17.
以聚苯胺(PANI)为基体,Fe3O4为磁性能给体,通过化学镀的方法在Fe3O4表面包覆一层银单质制备Ag/Fe3O4,并通过化学原位聚合的方法将PANI与Ag/Fe3O4复合,制备导电聚合物电磁双复型复合材料PANI/Ag/Fe3O4。结果表明,当Ag/Fe3O4的添加量为PANI质量的20%时,PANI/Ag/Fe3O4复合材料的电导率为0.85 S/cm,饱和磁化强度为 16.34 emu/g,复合材料的电磁性能得到很好的匹配;Ag/Fe3O4的加入阻碍了PANI的分解,PANI/Ag/Fe3O4复合材料的分解温度升高,热稳定性加强。  相似文献   

18.
《Ceramics International》2023,49(12):20470-20479
In this work, Fe3O4@SiO2-(-NH2/-COOH) nanoparticles were synthesized for the removal of Cd2+, Pb2+ and Zn2+ ions from wastewater. The results of characterization showed that Fe3O4@SiO2-(-NH2/-COOH) was superparamagnetic with a core–shell structure. The surface of Fe3O4 was successfully coated with silica and modified with amino groups and carboxyl groups through the use of a silane coupling agent, polyacrylamide and polyacrylic acid. The dispersion of the particles was improved, and the surface area of the Fe3O4@SiO2-(-NH2/-COOH) nanoparticles was 67.8 m2/g. The capacity of Fe3O4@SiO2-(-NH2/-COOH) to adsorb the three heavy metals was in the order Pb2+ > Cd2+ > Zn2+, and the optimal adsorption conditions were an adsorption dose of 0.8 g/L, a temperature of 30°C and concentrations of Pb2+, Cd2+ and Zn2+ below 120, 80 and 20 mg/L, respectively. The maximum adsorption capacities for Pb2+, Cd2+ and Zn2+ were 166.67, 84.03 and 80.43 mg/g. The adsorption kinetics followed a pseudo-second-order model and Langmuir isotherm model adequately depicted the isotherm adsorption process. Thermodynamic analysis showed that the adsorption of the three metal ions was an endothermic process and that increasing the temperature was conducive to this adsorption.  相似文献   

19.
A synthetic method to prepare a core-shell-structured Fe3O4@SiO2 as a safe nanovehicle for tumor cell targeting has been developed. Superparamagnetic iron oxide is encapsulated inside nonporous silica as the core to provide magnetic targeting. Carboxymethyl chitosan-folic acid (OCMCS-FA) synthesized through coupling folic acid (FA) with OCMCS is then covalently linked to the silica shell and renders new and improved functions because of the original biocompatible properties of OCMCS and the targeting efficacy of FA. Cellular uptake of the nanovehicle was assayed by confocal laser scanning microscope using rhodamine B (RB) as a fluorescent marker in HeLa cells. The results show that the surface modification of the core-shell silica nanovehicle with OCMCS-FA enhances the internalization of nanovehicle to HeLa cells which over-express the folate receptor. The cell viability assay demonstrated that Fe3O4@SiO2-OCMCS-FA nanovehicle has low toxicity and can be used as an eligible candidate for drug delivery system. These unique advantages make the prepared core-shell nanovehicle promising for cancer-specific targeting and therapy.  相似文献   

20.
A binary composite consisting of graphene oxide (GO) and polyethylenimine (PEI) was fabricated by a facile physical mixing. Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Zeta potential were used to characterize the prepared graphene oxide-polyethylenimine composite (GOPC). A series of experiments were carried out to investigate the effects of some important parameters, such as molecular weight of PEI, pH, time and temperature, on the adsorption efficiency of GOPC. Due to the high amine density of GOPC, its adsorption for Cr(VI) occurred more easily at lower pH mainly via electrostatic interaction. The adsorption process matched well with the Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum adsorption capacity from the Langmuir model was 370.37 mg/g at pH 2.0 and 45°C for GOPC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto GOPC. The main adsorption mechanism of GOPC toward Cr(VI) was electrostatic interaction. The adsorption-desorption experiments suggested GOPC was easily recycled and its stable adsorption capacity endowed it great potential as an adsorbent of Cr(VI) from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号