首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
纳米复合铁氧体微波吸收剂的研究进展   总被引:5,自引:0,他引:5  
纳米复合铁氧体微波吸收剂由于具有铁氧体、复合材料和纳米材料三者的优点,正成为吸波材料的重要研究方向而越来越引起广泛的重视和深入的研究.阐述了纳米复合铁氧体微波吸收剂的吸波机理,详细介绍了纳米复合铁氧体微波吸收剂的制备技术和研究应用现状,并对其前景进行了展望.  相似文献   

2.
溶胶-凝胶法制备的LiLaxFe5-xO8纳米晶材料的微波吸收特性   总被引:4,自引:0,他引:4  
采用溶胶-凝胶法制备了掺稀土元素镧的锂铁氧体纳米晶粉末,就镧元素的含量对锂铁氧体吸波性能的影响进行了对比研究。实验表明,用聚乙二醇凝胶法制备的LiLaxFe5-xdO8纳米晶粉末,当x=0.03时,对微波吸收效果最佳,在涂层厚度1.2mm,测试频段为7.5~11.9GHz内,35dB带宽为2.5GHz,在10.6GHz处,吸收峰值达45dB。  相似文献   

3.
添加稀土对吸波材料性能的影响   总被引:15,自引:1,他引:14  
在铁砂、铁氧体和铁磁-铁电等复合电波吸收材料中掺入微量稀土氧化物能全面大幅度提高材料的吸波特性。最大吸收量可提高54%-125%,10dB带宽扩展近一倍。匹配厚度也有所降低。还发现,稀土氧化物的掺入量存在极值,添加混合稀土氧化物比添加高纯度稀土氧化物能获得更好的效果。因此添加稀土复合物是提高吸波材料性能的一种途径。  相似文献   

4.
以NiZn铁氧体为主吸收剂,添加其他介质制成复合电波吸收材料,经垂直和平行磁场磁织构化处理后,在7.5~12GHz波段测试其吸波性能,发现样品的最大反射衰减量由原来的30.5dB分别增高到36.0dB和31.7dB,匹配厚度略增,面密度略降,吸收峰移向低频,10dB带宽略增.垂直和平行磁场织构化的双层结构,其吸波性能与单层相比有所改变.  相似文献   

5.
稀土材料微波吸收特性的研究   总被引:10,自引:1,他引:9  
对稀土材料微波吸收剂的制备方法和吸波特性进行了研究,并对用行星球磨机研磨含有过量α-Fe的Nd2Fe14B而制得的纳米材料,以废旧Nd2Fe14B为主再渗杂锂、钛、锌后得到的吸波材料及锂锌铁氧体微粉的吸波特征进行了对比。实验结果表明:由含有过量α-Fe的Nd2Fe14B经球磨后制得的纳米材料具有显著的吸波性能,在匹配厚度其吸收峰值最高达到37dB以上,它是一种有发展前景的微波吸收剂。  相似文献   

6.
吸波材料已被广泛应用于民用领域的抗电磁干扰和国防领域的雷达波隐身。吸波材料通常由吸收剂和粘接剂复合而成,其吸波性能由复合材料的电磁参数和吸波材料的厚度共同决定。为了提高吸波材料的吸波性能,近年来不同类型的吸收剂,包括磁性铁氧体颗粒、磁性金属颗粒、碳材料、磁性颗粒/碳材料复合物得到广泛研究,但吸波材料在"薄、轻、宽、强"综合目标的实现上却进展不大,其主要原因是研究者在有关吸波材料的吸波机制及吸收剂性能优劣的评价标准上没有达成科学共识。本文介绍了吸波材料随厚度变化的吸波特征,根据最近的实验和计算结果阐明了吸波材料的吸波机制,基于吸波机制提出了吸收剂性能优劣的评价方法。期望通过对吸波材料吸波机制以及吸收剂性能优劣评价方法的讨论,促进吸波材料的研究和应用取得实质进展。  相似文献   

7.
在用铁砂制备的铁氧体基复合电波吸收材料中添加一定量的单轴各向异性磁铅石铁氧体单畴微粉,通过磁织构化处理,使高度弥散在基础材料中的磁铅石铁氧体易磁化轴有序排列。结果使铁氧体吸波材料的特性发生明显的变化吸收量  相似文献   

8.
以硝酸盐混合溶液喷雾干燥后的粉末为原材料制备了Co2-Z型铁氧体。分别利用XRD、SEM和微波矢量网络分析仪对产物的晶体结构、形貌及其电磁性能进行表征,并模拟计算不同样品厚度的吸波性能。结果表明,最佳焙烧温度为1100℃,比传统固相法低;所制备的Co2-Z型铁氧体为直径约2μm的六方片状,这是吸波材料理想的形貌;吸波性能优良,4mm铁氧体-石蜡样品(质量比3∶1)最大吸收量约为26dB。  相似文献   

9.
用铁砂制备的铁氧体基混合型电波吸收材料   总被引:2,自引:1,他引:1  
在铁氧体基复合电波吸收材料中通过混合磁介质,介电型和电阻型吸收材料,在7~12GHz频段研究吸波特性,发现磁介质和电介质的加入使吸收量增加,吸收量A〉20dB,匹配厚度h〈1mm面密度δ〈1.8kg/m^2而电阻型介质的加入,使吸收量降低,匹配厚度增加,铁氧体,电介质和电阻型介质混合制成混合型电波吸收材料,再添加不同的磁性材料,发现吸收量增加,达到30dB,带宽也增加,15dB带宽为2.8GHz,  相似文献   

10.
采用溶胶-凝胶法制备了Nd3+掺杂尖晶石型NiNdx Fe2-x O4镍铁氧体,借助同步热分析仪、X射线衍射仪、矢量网络分析仪对产物的结构及电磁参数进行了测试分析。通过匹配解析图求得样品最佳匹配厚度和最佳匹配频率,同时利用传输线理论计算了最佳条件下样品的吸波性能。结果表明,生成镍铁氧体的处理温度不能低于1000℃,且当Nd3+掺杂量降到x=0.04时,生成纯净的Nd3+掺杂镍铁氧体粉末。Nd3+掺杂量的变化对镍铁氧体的电磁参数及吸波性能有较大影响,随Nd3+掺杂量减小,样品的匹配厚度及最小反射率峰值呈现逐渐减小的趋势,吸收峰向高频移动。当x=0.02时,最小反射率达-47dB,小于-10dB频宽达到4.5GHz。  相似文献   

11.
提出了一种基于介质阻抗变换宽带强吸收的电路模拟吸波体结构,该结构由双层吸波峰窝、介质和单层方环形电阻膜组成。吸波蜂窝作为六边形柱体芳纶纸蜂窝浸渍导电炭黑的复合材料,采用波导法测量了8~18 GHz的等效电磁参数。基于等效电路法分析了该吸波结构的匹配机理,应用多层介质/吸波蜂窝能实现宽带多阶阻抗匹配。采用路仿真技术,进行等效电路参数优化,并选取对应吸波结构参数。路仿真技术和全波仿真的结果保持一致,由此得出了一种快速的优化仿真设计方法。在入射角为0°~20°的范围内,基本实现了X波段双极化的30 dB吸收,且在入射角50°范围内,基本实现了8~18 GHz的10 dB吸收性能。该吸波体结构具有宽带强吸收性能,和优良的机械强度。  相似文献   

12.
PANI/SrFe12O19复合材料的结构和吸波性能   总被引:1,自引:0,他引:1  
采用氧化物法制备了导电聚苯胺(PANI)铁氧体磁性复合颗粒.利用透射电子显微镜(TEM)、X射线衍射仪(XRD)和傅里叶红外光谱仪(FT-IR)等分析手段观测了复合粒子的形貌、结构和性能,采用矢量网络分析仪在0.5~20GHz频段内测试了材料的吸波性能.实验结果表明,具有核/壳结构的导电聚苯胺复合材料具有较好的吸波性能.当SrFe12O19和Li0.45Zn0.1Fe2.45O4掺入量分别为15wt%和5wt%时,最大衰减为24.7dB,-8dB带宽达4.4GHz.因此通过调整复合体中铁氧体的含量和种类,可以调整其特性以满足不同需求.  相似文献   

13.
首先用柠檬酸溶胶-凝胶(sol-gel)法制备了BaCo2Fe16O27型六角铁氧体,经不同温度焙烧后,分析产物的结构和形貌,确定出较优的焙烧温度,然后以此工艺制备W型Ba(Zn1-x Cox)2Fe16O27(x=0,0.2,0.6,0.8,1.0)六角铁氧体,分析其吸波性能.研究表明,x=0.8时,样品的有效吸波带宽可拓宽到12~18 GHz整个波段,吸收峰值可提高到-20dB.  相似文献   

14.
采用机械球磨法使羰基铁粉片状化,以正硅酸乙脂(TEOS)为硅源,通过St?ber法制备二氧化硅(Si O_2)包覆的片状羰基铁粉。通过扫描电子显微镜、能谱、红外光谱、X射线衍射等手段研究了Si O_2包覆的羰基铁粉的结构特性,并讨论了Si O_2包覆对其热性能、电磁和微波吸收性能的影响。结果表明,Si O_2包覆羰基铁粉的抗氧化性能显著提高。与未包覆羰基铁相比,包覆后羰基铁粉的介电常数急剧下降,在1~6GHz波段内具有较好的吸波效果。当厚度为3.4 mm时,在2 GHz处的最小反射损耗可以达到-25.6 d B。  相似文献   

15.
高效液相吸收剂同时脱硫脱硝的实验研究   总被引:6,自引:1,他引:5  
采用乙二胺合钴溶液作为吸收液,在双驱动搅拌反应器内,对模拟烟气进行湿法烟气同时脱硫脱硝的实验研究。主要考察在SO2存在的条件下,SO2的浓度、温度、NO的浓度、O2的浓度和pH值等因素对NO吸收速率的影响。研究表明:气相中SO2的存在不利于NO的吸收;NO的吸收速率随乙二胺合钴浓度的增加而增大;气相中氧的存在有利于提高NO的吸收速率;NO吸收的最佳温度是50 ℃;溶液的pH值是影响NO吸收的主要因素,最佳pH值为12.9,对于高浓度的乙二胺合钴溶液,溶液的pH值对NO吸收速率的影响显著。  相似文献   

16.
采用真空悬浮熔炼和高能球磨工艺制备(Al8Mn5)95Ni5微粉,并与石蜡按不同体积浓度制成复合材料,采用网络矢量分析仪研究(Al8Mn5)95Ni5微粉体积浓度对复合材料微波吸收特性的影响。结果表明:随着(Al8Mn5)95Ni5微粉体积浓度的增加,复合材料的ε″共振峰频率、μ″共振峰频率和反射损耗峰频率均向低频方向移动;涂层厚度为1.5 mm时,(Al8Mn5)95Ni5微粉体积浓度为30%的复合材料具有最小的反射损耗峰值(约为-34.98 d B)和很好的频宽效果;增加复合材料中(Al8Mn5)95Ni5微粉体积浓度,被吸波涂层表面反射回去的电磁波会增多。  相似文献   

17.
利用简便的氧化沉淀法制备出了结晶度高、粒径均一的八面体Fe3O4纳米颗粒。通过X射线衍射(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)对产物的结构、形貌、粒径及磁性能进行了表征。制备的八面体Fe3O4纳米颗粒平均粒径为43nm,在室温下表现出铁磁性,比饱和磁化强度和矫顽力分别为74.2 A.m2/kg和7.4 kA/m。利用矢量网络分析仪对Fe3O4纳米颗粒-石蜡复合样品在0.5~18GHz频率范围内的电磁参数进行了测量,研究了复合样品的微波吸收性能。结果表明,复合样品具有良好的微波吸收,吸收峰位随着样品厚度的增加向低频移动,峰值和吸收峰数目也随样品厚度而变化,当匹配厚度为2.8 mm时,在10.8 GHz反射损失最小值达到了-22.5 dB。  相似文献   

18.
Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range of 1 ns-300 fs at 1053-nm wavelength. It was found that pulsed laser ablation of transparent and weakly absorbing gels is always mediated by plasma. On the other hand, ablation of strongly absorbing tissues is mediated by plasma in the ultrashort-pulse range only. Ablation threshold along with plasma optical breakdown threshold decreases with increasing tissue absorbance for subnanosecond pulses. In contrast, the ablation threshold was found to be practically independent of tissue linear absorption for femtosecond laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond range of laser pulse duration, optical breakdown proceeds via avalanche ionization initiated by heating of electrons contributed by strongly absorbing impurities at the tissue surface. In the ultrashortpulse range, optical breakdown is initiated by multiphoton ionization of the irradiated medium (six photons in case of tissue irradiated at 1053-nm wavelength), and is less sensitive to linear absorption. High-quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with subpicosecond laser pulses. Experimental results suggest that subpicosecond plasma mediated ablation can be employed as a tool for precise laser microsurgery of various tissues  相似文献   

19.
采用电加热和化学气相沉淀(CVD)法合成双复纤维材料,研究了双复纤维含量一定的条件下长径比对吸波性能的影响.结果表明,双复纤维长径比的增大导致复磁导率和复介电常数都有所增大,其中复介电常数的实部显著增大,而且双复纤维长径比为15∶1左右时,吸波效果较好,吸收峰为-19.1dB,11.2~1 8GHz范围反射率低于-5d...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号