首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
Integration of Control Theory and Genetic Programming paradigm toward development a family of controllers is addressed in this paper. These controllers are applied for autonomous navigation with collision avoidance and bounded velocity of an omnidirectional mobile robot. We introduce the concepts of natural and adaptive behaviors to relate each control objective with a desired behavior for the mobile robot. Natural behaviors lead the system to fulfill a task inherently. In this work, the motion of the mobile robot to achieve desired position, ensured by applying a Control-Theory-based controller, defines the natural behavior. The adaptive behavior, learned through Genetic-Programming, fits the robot motion in order to avoid collision with an obstacle while fulfilling velocity constraints. Hence, the behavior of the mobile robot is the addition of the natural and the adaptive behaviors. Our proposed methodology achieves the discovery of 9402 behaviors without collisions where asymptotic convergence to desired goal position is demonstrated by Lyapunov stability theory. Effectiveness of proposed framework is illustrated through a comparison between experiments and numerical simulations for a real mobile robot.  相似文献   

2.
A new algorithm is presented for the modeling and simulation of multi-flexible-body systems. This algorithm is built upon a divide-and-conquer-based multibody dynamics framework, and it is capable of handling arbitrary large rotations and deformations in articulated flexible bodies. As such, this work extends the current capabilities of the flexible divide-and-conquer algorithm (Mukherjee and Anderson in Comput. Nonlinear Dyn. 2(1):10–21, 2007), which is limited to the use of assumed modes in a floating frame of reference configuration. The present algorithm utilizes the existing finite element modeling techniques to construct the equations of motion at the element level, as well as at the body level. It is demonstrated that these equations can be assembled and solved using a divide-and-conquer type methodology. In this respect, the new algorithm is applied using the absolute nodal coordinate formulation (ANCF) (Shabana, 1996). The ANCF is selected because of its straightforward implementation and effectiveness in modeling large deformations. It is demonstrated that the present algorithm provides an efficient and robust method for modeling multi-flexible-body systems that employ highly deformable bodies. The new algorithm is tested using three example systems employing deformable bodies in two and three spatial dimensions. The current examples are limited to the ANCF line or cable elements, but the approach may be extended to higher order elements. In its basic form, the divide-and-conquer algorithm is time and processor optimal, yielding logarithmic complexity O(log(N b )) when implemented using O(N b ) processors, where N b is the number of bodies in the system.  相似文献   

3.
Crowdsourcing applications like Amazon Mechanical Turk (AMT) make it possible to address many difficult tasks (e.g., image tagging and sentiment analysis) on the internet and make full use of the wisdom of crowd, where worker quality is one of the most crucial issues for the task owners. Thus, a challenging problem is how to effectively and efficiently select the high quality workers, so that the tasks online can be accomplished successfully under a certain budget. The existing methods on the crowd worker selection problem mainly based on the quality measurement of the crowd workers, those who have to register on the crowdsourcing platforms. With the connect of the OSNs and the crowdsourcing applications, the social contexts like social relationships and social trust between participants and social positions of participants can assist requestors to select one or a group of trustworthy crowdsourcing workers. In this paper, we first present a contextual social network structure and a concept of Strong Social Component (SSC), which emblems a group of workers who have high social contexts values. Then, we propose a novel index for SSC, and a new efficient and effective algorithm C-AWSA to find trustworthy workers, who can complete the tasks with high quality. The results of our experiments conducted on four real OSN datasets illustrate that the superiority of our method in trustworthy worker selection.  相似文献   

4.
In this paper, an innovative framework labeled as cooperative cognitive maritime big data systems (CCMBDSs) on the sea is developed to provide opportunistic channel access and secure communication. A two-phase frame structure is applied to let Secondary users (SUs) entirely utilize the transmission opportunities for a portion of time as the reward by cooperation with Primary users (PUs). Amplify-and-forward (AF) relaying mode is exploited in SU nodes, and Backward induction method based Stackelberg game is employed to achieve optimal determination of SU, power consumption and time portion of cooperation both for non-secure communication scenario and secure communication. Specifically, a jammer-based secure communications scheme is developed to maximize the secure utility of PU, to confront of the situation that the eavesdropper could overheard the signals from SU i and the jammer. Close-form solutions for the best access time portion as well as the power for SU i and jammer are derived to realize the Nash Equilibrium. Simulation results validate the effectiveness of our proposed strategy.  相似文献   

5.
We study the physical behavior of the transition of a 5D perfect fluid universe from an early decelerating phase to the current accelerating phase in the framework of f(R, T) theory of gravity in the presence of domain walls. The fifth dimension is not observed because it is compact. To determine the solution of the field equations, we use the concept of a time-dependent deceleration parameter which yields the scale factor a(t) = sinh1/n(αt), where n and α are positive constants. For 0 < n ≤ 1, this generates a class of accelerating models, while for n > 1 the universe attains a phase transition from an early decelerating phase to the present accelerating phase, consistent with the recent observations. Some physical and geometric properties of the models are also discussed.  相似文献   

6.
We consider a two-person nonantagonistic positional differential game (NPDG) whose dynamics is described by an ordinary nonlinear vector differential equation. Constraints on values of players’ controls are geometric. Final time of the game is fixed. Payoff functionals of both players are terminal. The formalization of positional strategies in an NPDG is based on the formalization and results of the general theory of antagonistic positional differential games (APDGs) (see monographs by N.N. Krasovskii and A.I. Subbotin [3, 4]). Additionally, in the present paper we assume that each player, together with the usual, normal (nor), type of behavior aimed at maximizing his own functional, can use other behavior types introduced in [2, 5]. In particular, these may be altruistic (alt), aggressive (agg), and paradoxical (par) types. It is assumed that in the course of the game players can switch their behavior from one type to another. Using the possibility of such switches in a repeated bimatrix 2 × 2 game in [5, 6] allowed to obtain new solutions of this game. In the present paper, extension of this approach to NPDGs leads to a new formulation of the problem. In particular, of interest is the question of how players’ outcomes at Nash solutions are transformed. An urgent problem is minimizing the time of “abnormal” behavior while achieving a good result. The paper proposes a formalization of an NPDG with behavior types (NPDGwBT). It is assumed that in an NPDGwBT each player, simultaneously with choosing a positional strategy, chooses also his own indicator function defined on the whole game horizon and taking values in the set {normal, altruistic, aggressive, paradoxical}. The indicator function of a player shows the dynamics of changes in the behavior type demonstrated by the player. Thus, in this NPDGwBT each player controls the choice of a pair {positional strategy, indicator function}. We define the notion of a BT-solution of such a game. It is expected that using behavior types in the NPDGwBT which differ from the normal one (so-called abnormal types) in some cases may lead to more favorable outcomes for the players than in the NPDG. We consider two examples of an NPDGwBT with simple dynamics in the plane in each of which one player keeps to altruistic behavior type over some time period. It is shown that in the first example payoffs of both players increase on a BT-solution as compared to the game with the normal behavior type, and in the second example, the sum of players’ payoffs is increased.  相似文献   

7.
Ageing population represents one of the most pressing issues of the modern society. Recognising the need for a proactive attitude, a multidimensional Active Ageing Index (AAI) has been introduced. In order to consider the AAI as a useful tool for future policy making, several weaknesses of the current methodology must be stressed out. Specifically, the assignment of weights to individual indicators is essentially a subjective procedure. As a possible remedy to the issue, this paper proposes the application of the statistical Composite I-distance Indicator (CIDI) method. The aim of this research is to introduce the use of a two-step CIDI approach that has several benefits. Firstly, the I-distance method, as an underlying foundation of CIDI, defines which of the input indicators/domains are most significant for the ranking process; therefore it allows the calculation of statistically based weights. Secondly, the obtained weights integrated into AAI framework provide more impartial rankings by each of the four domains and in total. Moreover, uncertainty and sensitivity analysis was applied to both the official and the proposed methodology, and the results imply that our proposal establishes a more stable ranking. Additionally, analysis has shown that input indicators/domains with the highest significance are areas in which implemented policies would contribute the most to Active Ageing goals.  相似文献   

8.
Nowadays, location-based services (LBS) are facilitating people in daily life through answering LBS queries. However, privacy issues including location privacy and query privacy arise at the same time. Existing works for protecting query privacy either work on trusted servers or fail to provide sufficient privacy guarantee. This paper combines the concepts of differential privacy and k-anonymity to propose the notion of differentially private k-anonymity (DPkA) for query privacy in LBS. We recognize the sufficient and necessary condition for the availability of 0-DPkA and present how to achieve it. For cases where 0-DPkA is not achievable, we propose an algorithm to achieve ??-DPkA with minimized ??. Extensive simulations are conducted to validate the proposed mechanisms based on real-life datasets and synthetic data distributions.  相似文献   

9.
Grouping is a common phenomenon in pedestrian crowds and plays important roles in affecting crowd behavior. Group modeling is still an open challenging problem and has not been incorporated by existing crowd simulation models. Motivated by the need of group modeling for crowd behavior simulation, this paper presents a unified and well-defined framework for modeling the structure aspect of different groups in pedestrian crowds. Both intra-group structure and inter-group relationships are considered and their effects on the crowd behavior are modeled. Based on this framework, an agent-based crowd simulation system is developed and crowd behavior simulations using two different group structures are presented. The simulation results show that the developed framework allows different group structures to be easily modeled. Besides, different group sizes, intra-group structures and inter-group relationships can have significant impacts on crowd behaviors.  相似文献   

10.
Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham representation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is formulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoelastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and validated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and Newmark-\(\beta \) algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomagnetic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear dependency on temperature and some second-order interactions.  相似文献   

11.
Recent years have witnessed the rapid growth of text data, and thus the increasing importance of in-depth analysis of text data for various applications. Text data are often organized in a database with documents labeled by attributes like time and location. Different documents manifest different topics. The topics of the documents may change along the attributes of the documents, and such changes have been the subject of research in the past. However, previous analyses techniques, such as topic detection and tracking, topic lifetime, and burstiness, all focus on the topic behavior of the documents in a given attribute range without contrasting to the documents in the overall range. This paper introduces the concept of u n i q u e t o p i c s, referring to those topics that only appear frequently within a small range of documents but not in the whole range. These unique topics may reflect some unique characteristics of documents in this small range not found outside of the range. The paper aims at an efficient pruning-based algorithm that, for a user-given set of keywords and a user-given attribute, finds the maximal ranges along the given attribute and their unique topics that are highly related to the given keyword set. Thorough experiments show that the algorithm is effective in various scenarios.  相似文献   

12.
The advancement of World Wide Web has revolutionized the way the manufacturers can do business. The manufacturers can collect customer preferences for products and product features from their sales and other product-related Web sites to enter and sustain in the global market. For example, the manufactures can make intelligent use of these customer preference data to decide on which products should be selected for targeted marketing. However, the selected products must attract as many customers as possible to increase the possibility of selling more than their respective competitors. This paper addresses this kind of product selection problem. That is, given a database of existing products P from the competitors, a set of company’s own products Q, a dataset C of customer preferences and a positive integer k, we want to find k-most promising products (k-MPP) from Q with maximum expected number of total customers for targeted marketing. We model k-MPP query and propose an algorithmic framework for processing such query and its variants. Our framework utilizes grid-based data partitioning scheme and parallel computing techniques to realize k-MPP query. The effectiveness and efficiency of the framework are demonstrated by conducting extensive experiments with real and synthetic datasets.  相似文献   

13.
With the popularization of wireless networks and mobile intelligent terminals, mobile crowd sensing is becoming a promising sensing paradigm. Tasks are assigned to users with mobile devices, which then collect and submit ambient information to the server. The composition of participants greatly determines the quality and cost of the collected information. This paper aims to select fewest participants to achieve the quality required by a sensing task. The requirement namely “t-sweep k-coverage” means for a target location, every t time interval should at least k participants sense. The participant selection problem for “t-sweep k-coverage” crowd sensing tasks is NP-hard. Through delicate matrix stacking, linear programming can be adopted to solve the problem when it is in small size. We further propose a participant selection method based on greedy strategy. The two methods are evaluated through simulated experiments using users’ call detail records. The results show that for small problems, both the two methods can find a participant set meeting the requirement. The number of participants picked by the greedy based method is roughly twice of the linear programming based method. However, when problems become larger, the linear programming based method performs unstably, while the greedy based method can still output a reasonable solution.  相似文献   

14.
Multimedia content adaption strategies are becoming increasingly important for effective video streaming over the actual heterogeneous networks. Thus, evaluation frameworks for adaptive video play an important role in the designing and deploying process of adaptive multimedia streaming systems. This paper describes a novel simulation framework for rate-adaptive video transmission using the Scalable Video Coding standard (H.264/SVC). Our approach uses feedback information about the available bandwidth to allow the video source to select the most suitable combination of SVC layers for the transmission of a video sequence. The proposed solution has been integrated into the network simulator NS-2 in order to support realistic network simulations. To demonstrate the usefulness of the proposed solution we perform a simulation study where a video sequence was transmitted over a three network scenarios. The experimental results show that the Adaptive SVC scheme implemented in our framework provides an efficient alternative that helps to avoid an increase in the network congestion in resource-constrained networks. Improvements in video quality, in terms of PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) are also obtained.  相似文献   

15.
Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.  相似文献   

16.
The problem of sampling from data streams has attracted significant interest in the last decade. Whichever sampling criteria is considered (uniform sample, maximally diverse sample, etc.), the challenges stem from the relatively small amount of memory available in the face of unbounded streams. In this work we consider an interesting extension of this problem, the framework of which is stimulated by recent improvements in sensing technologies and robotics. In some situations it is not only possible to digitally sense some aspects of the world, but to physically capture a tangible aspect of that world. Currently deployed examples include devices that can capture water/air samples, and devices that capture individual insects or fish. Such devices create an interesting twist on the stream sampling problem, because in most cases, the decision to take a physical sample is irrevocable. In this work we show how to generalize diversification sampling strategies to the irrevocable-choice setting, demonstrating our ideas on several real world domains.  相似文献   

17.
Model differencing is an important activity in model-based development processes. Differences need to be detected, analyzed, and understood to evolve systems and explore alternatives. Two distinct approaches have been studied in the literature: syntactic differencing, which compares the concrete or abstract syntax of models, and semantic differencing, which compares models in terms of their meaning. Syntactic differencing identifies change operations that transform the syntactical representation of one model to the syntactical representation of the other. However, it does not explain their impact on the meaning of the model. Semantic model differencing is independent of syntactic changes and presents differences as elements in the semantics of one model but not the other. However, it does not reveal the syntactic changes causing these semantic differences. We define Diffuse, a language-independent, abstract framework, which relates syntactic change operations and semantic difference witnesses. We formalize fundamental relations of necessary, exhibiting, and sufficient sets of change operations and analyze their properties. We further demonstrate concrete instances of the Diffuse framework for three different popular modeling languages, namely class diagrams, activity diagrams, and feature models. The Diffuse framework provides a novel foundation for combining syntactic and semantic differencing.  相似文献   

18.
Recently, researches on smart phones have received attentions because the wide potential applications. One of interesting and useful topic is mining and predicting the users’ mobile application (App) usage behaviors. With more and more Apps installed in users’ smart phone, the users may spend much time to find the Apps they want to use by swiping the screen. App prediction systems benefit for reducing search time and launching time since the Apps which may be launched can preload in the memory before they are actually used. Although some previous studies had been proposed on the problem of App usage analysis, they recommend Apps for users only based on the frequencies of App usages. We consider that the relationship between App usage demands and users’ recent spatial and temporal behaviors may be strong. In this paper, we propose Spatial and Temporal App Recommender (STAR), a novel framework to predict and recommend the Apps for mobile users under a smart phone environment. The STAR framework consists of four major modules. We first find the meaningful and semantic location movements from the geographic GPS trajectory data by the Spatial Relation Mining Module and generate the suitable temporal segments by the Temporal Relation Mining Module. Then, we design Spatial and Temporal App Usage Pattern Mine (STAUP-Mine) algorithm to efficiently discover mobile users’ Spatial and Temporal App Usage Patterns (STAUPs). Furthermore, an App Usage Demand Prediction Module is presented to predict the following App usage demands according to the discovered STAUPs and spatial/temporal relations. To our knowledge, this is the first study to simultaneously consider the spatial movements, temporal properties and App usage behavior for mining App usage pattern and demand prediction. Through rigorous experimental analysis from two real mobile App datasets, STAR framework delivers an excellent prediction performance.  相似文献   

19.
Inertial migration of particles has been widely used in inertial microfluidic systems to passively manipulate cells/particles. However, the migration behaviors and the underlying mechanisms, especially in a square microchannel, are still not very clear. In this paper, the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the migration characteristics and the underlying mechanisms of an inertial focusing single particle in a square microchannel. The grid-independence analysis was made first to highlight that the grid number across the thin liquid film (between a particle and its neighboring channel wall) was of significant importance in accurately capturing the migrating particle’s dynamics. Then, the inertial migration of a single particle was numerically investigated over wide ranges of Reynolds number (Re, from 10 to 500) and particle sizes (diameter-to-height ratio a/H, from 0.16 to 0.5). It was interesting to find that as Re increased, the channel face equilibrium (CFE) position moved outward to channel walls at first, and then inflected inwards to the channel center at high Re (Re?>?200). To account for the physical mechanisms behind this behavior, the secondary flow induced by the inertial focusing single particle was further investigated. It was found that as Re increased, two vortices appeared around the particle and grew gradually, which pushed the particle away from the channel wall at high Re. Finally, a correlation was proposed based on the numerical data to predict the critical length Lc (defined to describe the size of fluid domain that was strongly influenced by the particle) according to the particle size a/H and Re.  相似文献   

20.
The development of dedicated numerical codes has recently pushed forward the study of N-body gravitational dynamics, leading to a better and wider understanding of processes involving the formation of natural bodies in the Solar System. A major branch includes the study of asteroid formation: evidence from recent studies and observations support the idea that small and medium size asteroids between 100 m and 100 km may be gravitational aggregates with no cohesive force other than gravity. This evidence implies that asteroid formation depends on gravitational interactions between different boulders and that asteroid aggregation processes can be naturally modeled with N-body numerical codes implementing gravitational interactions. This work presents a new implementation of an N-body numerical solver. The code is based on Chrono::Engine (2006). It handles the contact and collision of large numbers of complex-shaped objects, while simultaneously evaluating the effect of N to N gravitational interactions. A special case of study is considered, investigating the relative dynamics between the N bodies and highlighting favorable conditions for the formation of a stable gravitationally bound aggregate from a cloud of N boulders. The code is successfully validated for the case of study by comparing relevant results obtained for typical known dynamical scenarios. The outcome of the numerical simulations shows good agreement with theory and observation, and suggests the ability of the developed code to predict natural aggregation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号