首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
田丰  杨慧群  张俊 《山西化工》2011,31(1):52-55
介绍了国内外密闭爆发器热散失修正方法的现状,分别分析了克劳-格里姆肖法、压力损失及其修正方法和发射药燃烧全过程压力曲线的修正方法及密闭爆发器实验过程中热散失修正研究方法的优缺点,提出了学术构想与思路。  相似文献   

2.
硝酸异丙酯对单基发射药燃烧性能的影响   总被引:2,自引:0,他引:2  
为研究硝酸异丙酯对单基发射药燃烧性能的影响,用密闭爆发器测试了加入硝酸异丙酯后单基发射药的燃烧性能。通过分析p-t曲线,得到最大压力、燃烧时间、气体生成猛度、压力全冲量、火药已燃百分数、火药力和余容等燃烧特性参数以及燃烧速度与压力之间的关系。结果表明,硝酸异丙酯使发射药的燃烧速度加快,燃烧时间缩短,燃速系数增大,压力指数减小。  相似文献   

3.
汽车防撞气囊气体发生剂燃烧示性参数的实验研究   总被引:1,自引:0,他引:1  
通过密闭爆发器试验,对含有叠氮化钠类汽车防撞气囊用气体发生剂的火药力、余容、燃烧速度进行了实验测量,为研究气体发生剂在气体发生器中的燃烧特性提供一些有用的基础数据  相似文献   

4.
为消除密闭爆发器测试压力信号中的杂波,真实地反映发射药的燃烧性能,采用有限冲激响应低通滤波和最小二乘结合的数字滤波器,对密闭爆发器实验结果进行滤波.结果表明,该数字滤波器能有效滤除测试信号中的杂波,处理得到的u-p曲线较好地反映发射药的实际燃烧性能,lnu-lnp曲线光滑,对局部压力段回归得到的燃速压力指数贴近发射药的真实值.  相似文献   

5.
一种低易损固体发射药的等离子体点火及燃烧特性   总被引:3,自引:3,他引:0  
采用密闭爆发器实验对低易损性(LOVA)发射药等离子体点火和燃烧性能进行了实验研究,通过分析P-t曲线和dP/dt-P/P-曲线的变化规律,探讨了等离子体对该种火药作用机理,以便进一步研究它用于电热化学炮发射试验中的装药结构和增强燃烧的机理。  相似文献   

6.
通过密闭爆发器恒压燃速仪对四种硝胺发射药在50-400MPa压力范围的燃速测定,分析了它们的燃烧规律,发现在黑索今基硝胺发射药中,除加入硝基胍作为燃速改良剂外,另一种化合物的加入。更有效地改善了黑索今基硝胺发射药u-p曲线转折的程度,并使压力指数控制在1。00左右。  相似文献   

7.
EI发射药的燃烧特性   总被引:1,自引:0,他引:1  
为研究EI发射药的燃烧性能,基于EI发射药的制备过程及药形结构特征,对EI发射药的浸渍层分布、燃烧过程中药型尺寸及能量特性的变化进行了理论分析和实验验证.建立了EI发射药的燃速计算数学模型.制备了NG浸渍量分别为10%和15%的EI-1和EI-2样品.进行了密闭爆发器试验、显微切片照相.结果表明,NG浸渍量为15%时,火药力提高了10.14%,浸渍深度为0.168 mm;根据实验数据计算EI发射药的u-p曲线,150 MPa前EI发射药的燃速高于单基发射药,在150 MPa后两者重合;由L-B曲线知EI-2发射药的燃烧渐增性较好.只要NG浸渍量和聚酯浸渍量配比合适,EI发射药的火药力和燃烧渐增性在一定范围内可以同步增加.  相似文献   

8.
微气孔球形药的定容燃烧性能   总被引:2,自引:0,他引:2  
采用密闭爆发器实验对微气孔球形药的定容燃烧性能进行了研究.结果表明,随着堆积密度的减小,孔隙率相应提高,压力上升速率加快,孔隙率与表观燃速系数呈指数关系;随着堆积密度的降低,动态活性曲线的峰值逐步提高,并表现出显著的燃烧渐增特性.  相似文献   

9.
多层发射药的燃烧特性   总被引:2,自引:0,他引:2  
利用已建立的圆环状多层发射药燃烧模型得到多层发射药的理论燃烧猛度Γ-Ψ曲线,并通过密闭爆发器实验测试了不同结构的多层发射药的静态燃烧性能,讨论了结构对多层发射药燃烧渐增性的影响。结果表明,火药燃去量处于0.2~0.8时,实验L-B曲线与理论Γ-Ψ曲线之间有着相同的变化趋势;过大(或过小)的内外层燃速比K和缓燃层厚度比X均对多层发射药的燃烧渐增性不利,只有在合理的范围里选择,多层发射药的燃烧渐增性才会呈现增强的趋势;随着药片宽厚比W的增大,多层发射药表现出恒面燃烧的特征,燃烧渐增性变佳。  相似文献   

10.
张江居 《火炸药》1989,(4):19-23
本文阐述了应用密闭爆发器试验方法对库存发射药的性能进行检验时,应把研究工作的重点放在燃烧性能方面,并应特别注意30~80MPa压力范围内燃烧性能变化情况。  相似文献   

11.
为了研究DAGQ发射药在膛内的燃烧性能,以经典内弹道理论为基础,建立了发射药膛内燃烧测试系统和处理方法,通过密闭爆发器燃烧试验和微波干涉法发射药膛内动态燃烧性能试验,研究了DAGQ发射药的静动态燃烧规律及不同温度下的动态燃烧特性。结果表明,所建立的试验系统和处理方法,能够很好地获得弹丸在膛内的运动过程。DAGQ发射药的静动态燃速都存在转折现象,静态燃速在转折点前压力指数大于1,转折点后压力指数都远小于1,动态燃速压力指数基本都小于1。在膛内燃烧过程中,由于高速气流对发射药的燃面冲刷,使得膛内的动态燃速要大于密闭爆发器内的静态燃速,并且随着膛内压力的增大,燃速相差越来越大。  相似文献   

12.
用DSC技术考察了7种含黑索今酮(Keto-RDX)火药的热分解特性,并对其中3种进行了密闭爆发器测试。将DSC数据对动力学方程进行拟合以求得动力学参数。从密闭爆发器测试结果转换得到了该3种火药的燃速-压力曲线,并对其进行了转折性分析。结果表明,向火药中加入Keto-RDX可提高火药燃速并降低其热分解表观活化能。含Keto-RDX的火药其燃速压力指数在低压区较在高压区为高。在火药中同时存在有Keto-RDX和RDX对火药热分解和燃烧的稳定性是不利的。仅由Keto-RDX与双基粘结剂组成的火药,其燃速压力指数较由RDX与双基粘结剂组成的火药为低。  相似文献   

13.
温刚  堵平  廖昕 《火炸药学报》2011,34(3):57-60
提出一种采用密闭爆发器测定发射药实际燃速的原理和方法,通过设计标准结构药型发射药、并对形状函数进行修正,可消除燃面变化对燃烧性能测试的影响;运用数学变换方法对测试数据进行处理,可消除压力变化对燃烧性能测试的影响.通过实验对该方法进行了验证,结果表明,用该方法可获得发射药的实际燃速.  相似文献   

14.
Two methods for processing the results of closed-bomb tests of propellants are proposed: a method for determining the force of propellant, the covolume of propellant gas, and the pressure dependence of the degree of propellant combustion that takes into account the heat exchange between the combustion products and the walls of the closed bomb; a procedure for determining the linear behavior of unsteady combustion in the form justified by Ya. B. Zel’dovich. It is shown that accounting for heat losses is necessary not only to determine the force of propellant and the covolume of propellant gas but also to determine the combustion behavior. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 2, pp. 29–38, March–April, 2006.  相似文献   

15.
A microcellular combustible ordnance material composed of 70 % RDX (cyclotrimethylene trinitramine) and 30 % PMMA (poly methyl methacrylate) was fabricated using the solvent method and foamed by supercritical CO2 as foaming agent. This material has a number of advantages and many find potential application in weaponry. In this paper, vented bomb tests were conducted on the porous materials to gain a qualitative understanding of how the material is burning in a gun environment. The extinguish process showed that the microcellular combustible material followed the in‐depth combustion mode, i.e. the combustion products infiltrated through inner pores as well as ignited the inner pore surface. With increasing burning degree, the depth and perforation size of infiltration zone increased. Closed bomb tests were also conducted to investigate the influences of test conditions on the burning behaviors. The results showed that when the ignition pressure was increased from 10.98 MPa to 15.0 MPa, the burning time was shortened, but the mass burning rate and vivacity did not change obviously. Mass burn rates at different loading densities indicated that while the pressure in closed vessel is high enough (p≥40 MPa), hot combustion gases were driven into the inner pores and convectively ignited the inner pores. The closed bomb results conducted at high and low temperature showed no abnormal burning behavior at low and high temperature can be observed.  相似文献   

16.
Aiming at the difficulty that the actual burning law of propellant in the gun bore couldn't be described exactly by static burning rate equation in the closed‐bomb, propellant dynamic burning rate equation and its acquisition method were established in the paper, which are based on static burning rate equation and considering burning gas flow and loading density influence factors in bore. A numerical code for interior ballistic two‐phase flow was successfully developed. And corresponding firing tests were also carried out. The comparison of simulations with interior ballistic code and firing test results show that the propellant dynamic burning rate equation makes the maximum errors of muzzle velocity and pressure in breech decreased from 2.97 % to 0.75 % and from 6.68 % to 0.38 %, respectively. This method not only improves simulation precision of gun muzzle velocity and pressure significantly, but also provides a means to improve the design accuracy for interior ballistic performance.  相似文献   

17.
分析了低温感发射装药燃烧过程,根据爆发器定容燃烧试验结果,阐明了火炮产生低温单发跳差的主要原因,叙述了一种消除低温单发跳差的装药方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号