首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为了解决交通标志识别易受光照、遮挡和小目标影响的问题,对YOLOv5-P6算法进行改进,提出了一种新的交通标志识别算法。算法采用加权双向特征金字塔网络,提高特征提取能力,增加了跨层连接并对传递的特征进行权重调整,更好地融合道路交通标志的通道特征;使用空洞空间池化金字塔模块提取多尺度上下文信息,进一步增大感受野从而改善语义分割的效果;引入改进的跨阶段局部网络,使模块更加简洁;在训练过程中加入随机裁剪技术,并采用图像缩放、图像切变以及代数运算对检测效果不理想的类别进行实例扩充,缓解模型的过拟合问题。在TT100K数据集上应用本算法,识别精度达到90.02%,与传统的YOLOv5模型相比提高了4.72%,帧处理速率达到36.07FPS。  相似文献   

2.
针对深度学习算法中目标检测网络模型在复杂环境下识别交通标志的难点,对YOLOv3模型迁移学习算法的基本特点展开研究,构建并划分了复杂环境下中国交通标志数据集,并通过引入特征尺度的概念进一步改进YOLOv3算法,使数据集能够更好地处理各种复杂环境带来的影响。通过对比实验,证明改进后的YOLOv3算法对复杂环境下交通标志检测的效果明显优于标准YOLOv3算法及SSD算法,获得了更高的检测精度和更短的检测时间。  相似文献   

3.
针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基于马尔科夫链蒙特卡罗采样(Markov Chain Monte Carlo sampling,MCMC)的[K]-means++算法对标注边界框尺寸信息进行聚类分析。训练时引入GIoU边界框回归损失函数。实验结果表明,改进的YOLOv3目标检测算法在满足实时性要求的情况下,精确率和召回率达到了95.3%和91.1%,与Faster R-CNN相比具有更高的检测速度,与SSD相比具有更高的检测精度,有效解决了原YOLOv3存在的定位精度偏低和漏检问题。  相似文献   

4.
针对雾霾、雨雪等恶劣天气下小型交通标志识别精度低、漏检严重的问题,提出一种基于YOLOv5的雾霾天气下交通标志识别模型。首先,对YOLOv5的结构进行优化,采用逆向思维,通过削减特征金字塔深度、限制最高下采样倍数来解决小目标难以识别的问题,并通过调整残差模块的特征传递深度来抑制背景特征的重复叠加;其次,引入数据增强、K-means先验框、全局非极大值抑制(GNMS)等机制到模型;最后,在中国交通标志数据集TT100K上验证改进YOLOv5模型在面对恶劣天气时的检测能力,并对精度下降最显著的雾霾天气下的交通标志识别展开了重点研究。实验结果表明,改进YOLOv5模型的F1-score达0.921 50,平均精度均值@0.5 (mAP@0.5)达95.3%,平均精度均值@0.5:0.95 (mAP@0.5:0.95)达75.2%,且所提模型在恶劣天气下仍能进行交通标志的高精度识别,每秒检测帧数(FPS)达到50,满足实时检测的需求。  相似文献   

5.
基于卷积神经网络的交通标志检测算法在对现实中复杂的交通场景图像进行交通标志检测时,难以同时解决定位和分类两项任务,并且目标检测领域相关算法所使用的公开数据集提供的图像和交通标志的种类不能满足现实交通场景中复杂的情况。建立一个新的道路交通标志数据集,在YOLOv4算法的基础上针对现实交通场景图像的复杂性和图像中交通标志尺寸差异较大的特点,设计多尺寸特征提取模块和增强特征融合模块,提高算法同时定位和分类交通标志的能力。在此基础上,对算法中不同的模块设置不同的参数进行对照实验,得到一组表现最优的参数,用于检测现实交通场景图片中的交通标志。在道路交通标志数据集上的实验结果表明,该算法相比基于卷积神经网络的同类型任务目标检测算法具有更高的检测精度,平均精度均值达到83.63%。  相似文献   

6.
在真实场景下准确实时检测小目标交通标志对自动驾驶有重要意义,针对YOLOv5算法检测小目标交通标志精度低的问题,提出一种基于改进YOLOv5的小目标交通标志实时检测算法。借鉴跨阶段局部网络思想,在YOLOv5的空间金字塔池化上设置新的梯度路径,强化特征提取能力;在颈部特征融合中增设深、浅卷积特征的可学习自适应权重,更好地融合深层语义和浅层细节特征,提高小目标交通标志的检测精度。为验证所提算法的优越性,在TT100K交通标志数据集上进行了实验验证。实验结果表明所提算法在小目标交通标志上的平均精度均值(mean average precision,mAP)为77.3%,比原始YOLOv5提升了5.4个百分点,同时也优于SSD、RetinaNet、YOLOX、SwinTransformer等算法的检测结果。所提算法的运行速度为46.2 frame/s,满足检测实时性的要求。  相似文献   

7.
张新宇  丁胜  杨治佩 《计算机应用》2022,42(8):2378-2385
针对交通标志在某些场景中存在分辨率过低、被覆盖等环境因素影响导致在目标检测任务中出现漏检、误检的情况,提出一种基于改进注意力机制的交通标志检测算法。首先,针对交通标志因破损、光照等环境影响造成图像分辨率低从而导致网络提取图像特征信息有限的问题,在主干网络中添加注意力模块以增强目标区域的关键特征;其次,特征图中相邻通道间的局部特征由于感受野重叠而存在一定的相关性,用大小为k的一维卷积代替通道注意力模块中的全连接层,以达到聚合不同通道信息和减少额外参数量的作用;最后,在路径聚合网络(PANet)的中、小尺度特征层引入感受野模块来增大特征图的感受野以融合目标区域的上下文信息,从而提升网络对交通标志的检测能力。在中国交通标志检测数据集(CCTSDB)上的实验结果表明,所提出的YOLOv4(You Only Look Once v4)改进算法在引进极少的参数量与原算法检测速度相差不大的情况下,平均精确率均值(mAP)达96.88%,mAP提升了1.48%;而与轻量级网络YOLOv5s相比,在单张检测速度慢10 ms的情况下,所提算法mAP比YOLOv5s高3.40个百分点,检测速度达到40?frame/s,说明该算法完全满足目标检测实时性的要求。  相似文献   

8.
为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,使用copy-paste进行数据增强后再送入网络进行训练,加强对小目标的检测能力;然后,引入Ghost来构建网络,削减原网络的参数和计算量,实现轻量化模型;最后,将坐标注意力机制(coordinate attention)融合到骨干网络里,增强对待测目标的表示和定位能力,提高识别精度.实验结果表明,YOLOv5s-GC模型相比于原YOLOv5s模型,参数数目减少了12%,检测速度提高了22%,平均精度达到了94.2%,易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.  相似文献   

9.
交通标志识别是自动驾驶技术中的关键一部分.针对交通标志在道路场景中目标较小且识别精度较低的问题,提出一种改进的YOLOv5算法.首先在YOLOv5模型中引入全局注意力机制(GAM),提高网络捕获不同尺度交通标志特征的能力;其次将YOLOv5算法中使用的GIoU损失函数更换为更具回归特性的CIoU损失函数来优化模型,提高对交通标志的识别精度.最后在Tsinghua-Tencent 100K数据集上进行训练,实验结果表明,改进后的YOLOv5算法对交通标志识别的平均精度均值为93.00%,相比于原算法提升了5.72%,具有更好的识别性能.  相似文献   

10.
针对交通标志识别模型检测速度与识别精度不均衡,以及受遮挡目标和小目标难以检测的问题,对YOLOv5模型进行改进,提出一种基于坐标注意力(CA)的轻量级交通标志识别模型。首先,通过在主干网络中融入CA机制,有效地捕获位置信息和通道之间的关系,从而更准确地获取感兴趣区域,避免过多的计算开销;然后,通过在特征融合网络中加入跨层连接,在不增加成本的情况下融合更多的特征信息,提高网络的特征提取能力,并改善对遮挡目标的检测效果;最后,引入改进的CIoU函数计算定位损失,以缓解检测过程中样本尺寸分布不均衡的现象,并进一步提高对小目标的识别精度。在TT100K数据集上应用所提模型时,识别精度达到了91.5%,召回率达到了86.64%,与传统的YOLOv5n模型相比分别提高了20.96%和11.62%,且帧处理速率达到了140.84 FPS。实验结果比较充分地验证了所提模型在真实场景中对交通标志检测与识别的准确性与实时性。  相似文献   

11.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

12.
对图像或视频数据中的车辆进行检测是城市交通监控中非常重要并且具有挑战性的任务。该任务的难度在于对复杂场景中相对较小的车辆进行精准地定位和分类。针对这些问题,提出了一个单阶段的深度神经网络(DF-YOLOv3),实现城市交通监控中不同类型车辆的实时检测。DF-YOLOv3对传统的YOLOv3算法进行改进,首先增强深度残差网络提取车辆特征,然后设计6个不同尺度的卷积特征图,并与残差网络中相应尺度的特征图进行融合,形成最终的特征金字塔执行车辆预测任务。在KITTI数据集上的实验表明,提出的DF-YOLOv3方法在精度和速度上均能获得较高的检测性能。具体地,对于512×512分辨率的输入模型,基于英伟达1080Ti GPU,DF-YOLOv3获得93.61%的mAP(均值平均精度),速度达到45.48 f/s(每秒传输帧数)。特别地,对于精度,DF-YOLOv3比Fast R-CNN、Faster R-CNN、DAVE、YOLO、SSD、YOLOv2、YOLOv3与SINet表现更好。  相似文献   

13.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

14.
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。  相似文献   

15.
针对基于深度学习的海上船舶目标检测任务中存在检测网络复杂且参数量大、检测实时性差的问题, 提出一种加强特征融合的轻量化YOLOv4算法——MA-YOLOv4. 首先使用MobileNetv3替换主干网络, 引入新的激活函数SiLU并使用深度可分离卷积代替普通3×3卷积降低网络参数量; 其次加入自适应空间特征融合模块加强特征融合; 最后使用MDK-means聚类算法得到适用于船舶目标的锚框, 用Ship7000数据集进行训练和评估. 实验结果表明, 改进算法与YOLOv4相比, 模型参数量降低82%, mAP提高2.57%, FPS提高30帧/s, 能实现对海上船舶的高精度实时检测.  相似文献   

16.
针对当前YOLOv4目标检测算法网络模型庞大、特征提取不充分且易受光线环境影响的缺点,提出了一种优化了特征提取网络和一般卷积块的轻量化YOLOv4-Lite网络模型。使用改进的MobileNetv3替换原有的主干特征提取网络,减小了网络模型的参数量,提高了检测精度。提出了使用深度可分离卷积块代替原网络中的普通卷积块,使得模型的参数量进一步降低。结合了标签平滑、学习率余弦退火衰减算法,新增了SiLU激活函数代替MobileNetv3浅层网络的ReLU激活函数,优化了模型的收敛效果。优化了Mosaic数据增强方法,提升了模型的鲁棒性。在人脸口罩佩戴任务中与原算法相比,牺牲了1.68%的mAP,但在检测效率(FPS)上提升约180%。  相似文献   

17.
杨毅  桑庆兵 《计算机工程》2022,48(12):288-295
织物瑕疵检测是纺织行业保证产品质量的重要环节,针对织物瑕疵检测中存在小目标瑕疵检测困难、不同种类瑕疵长宽比差异大、对实时性要求高等问题,提出一种新的轻量化织物瑕疵检测算法。以YOLOv4网络为基础,使用轻量化网络MobileNetv2为主干网络,有效减少模型参数总量与运算量,以满足实时性需求。在MobileNetv2的逆残差结构中加入CoordAttention注意力模块,将空间精确位置信息嵌入到通道注意力中,增强网络聚焦小目标特征的能力。使用自适应空间特征融合(ASFF)网络改进路径聚合网络(PANet),使模型通过学习获得多尺度特征图的融合权重,从而充分利用浅层特征与深层特征,提高算法对小目标瑕疵的检测精度。采用K-means++算法确定先验框尺寸,并用Focal Loss函数修改模型损失函数,降低正、负样本不平衡对检测结果的影响,解决不同种类瑕疵长宽比差异大及类别不平衡的问题。实验结果表明,相较于YOLOv4算法,所提算法的平均精度均值提高了2.3个百分点,检测速度提升了12 frame/s,能较好地应用于织物瑕疵检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号