共查询到13条相似文献,搜索用时 78 毫秒
1.
交通标志检测与识别是无人驾驶三大模块中环境感知的研究热点之一,检测和识别交通标志可以向无人车传递道路交通信息,优化行车决策.在暴雨、大雾以及光线昏暗等复杂环境下,拍摄到的图像往往会被遮挡,变得模糊.这不仅影响图像的质量,还会对后期标志的检测与识别带来巨大的困难.简述了交通标志检测与识别方法,对近年来国内外学者解决各类复... 相似文献
2.
针对交通标志目标检测尺寸较小、分辨率低、特征不明显问题,提出一种改进的YOLOv3网络模型.在利用颜色增强方法对交通标志进行数据增强后,改进原网络中的FPN结构,保留原网络中52×52的大尺度预测,然后利用YOLOv3网络中第二次下采样输出的特征图建立108×108的更大尺度预测.为了解决图像尺寸和失真的问题,在检测层... 相似文献
3.
针对我国自动驾驶的辅助识别交通标志误差率大、检测速度慢、需人工参与等问题,提出一种基于改进YOLOv3的交通标志检测识别方法。通过改进Darknet53网络结构来减少网络迭代过程中前向推理计算,提升网络迭代速度。引入目标检测的直接评价指标GIoU指导定位任务来提高检测精度。使用[k]-means++聚类算法获取anchor尺寸并匹配到对应的特征层。实验结果表明,提出的方法相较于原始YOLOv3在标准数据集Lisa上的平均精度提升了8%,检测速度达到了76.9 f/s;在自制数据集CQ-data上平均精度可达94.8%,与传统识别以及其他算法相比,不仅具有更好的实时性、准确性,对各种环境变化具有更好的鲁棒性,而且可以识别多种交通标志的类型。 相似文献
4.
YOLOv3目标检测算法检测精度高,检测速度快,能够实现对交通标志的实时检测。但由于YOLOv3模型要求设备具有较强的运算能力及较大的内存,难以直接部署在车辆等资源受限平台上。针对此问题,提出了一种Strong Tiny-YOLOv3目标检测模型,该模型通过引入FireModule层进行通道变换,在减小模型参数的同时能够加深模型深度。同时,模型在FireModule层之间加入short-cut来增强网络的特征提取能力。实验结果表明,模型在保持较高检测精度的前提下,能够极大减小YOLOv3模型对设备的依赖。与Tiny-YOLOv3模型相比,Strong Tiny-YOLOv3模型的参数量减少了87.3%,实际内存大小减少了77.9%,在GeForce 940MX上的检测速度提高了22.8%,且在GTSDB和CCTSDB交通标志数据集上的检测mAP分别提高了12%和3.8%。 相似文献
5.
实时而准确的交通标志检测是车辆的辅助驾驶和无人驾驶的关键需求。为解决目标检测算法对小目标物体检测精确率低、检测速度慢的问题,提出一种嵌入混合注意力机制的交通标志检测算法YOLOv3-HA。该算法融合改进的通道注意力机制和子空间注意力机制,使网络模型能够对特征进行通道和空间上的注意力加权,提升网络对有效特征的表达能力并减少干扰特征的影响。采用K-Means++聚类算法对锚框进行聚类和选择,加快网络模型的收敛速度。实验表明,该算法在TT100K(Tsinghua-Tencent 100 K)数据集上的平均准确率均值达到81.0%,相比于YOLOv3算法提升了14.2%;与一些主流目标检测算法相比,YOLOv3-HA算法在准确性和实时性上达到了良好的平衡。 相似文献
6.
针对YOLOv2算法实际检测到的小尺寸交通标志质量不佳,识别率低,实时性差的问题,提出一种基于改进YOLOv2的交通标志检测方法.首先,通过直方图均衡化、BM3D对图像增强以获取高质量图像;接着,将网络顶层卷积层输出的特征图进行精细划分,得到高细粒度的特征图,以检测高质量、小尺寸的交通标志;最后,采用归一化及优化置信度评分比例对损失函数进行改进.在结合CCTSD (中国交通标志检测数据集)和TT100K数据集的新数据集上进行实验,与YOLOv2网络模型相比,经过改进后的网络识别率提高了8.7%,同时模型的识别速度提高了15 FPS.实验结果表明:所提方法能够对小尺寸交通标志进行精准检测. 相似文献
7.
交通标志识别是自动驾驶技术中的关键一部分.针对交通标志在道路场景中目标较小且识别精度较低的问题,提出一种改进的YOLOv5算法.首先在YOLOv5模型中引入全局注意力机制(GAM),提高网络捕获不同尺度交通标志特征的能力;其次将YOLOv5算法中使用的GIoU损失函数更换为更具回归特性的CIoU损失函数来优化模型,提高对交通标志的识别精度.最后在Tsinghua-Tencent 100K数据集上进行训练,实验结果表明,改进后的YOLOv5算法对交通标志识别的平均精度均值为93.00%,相比于原算法提升了5.72%,具有更好的识别性能. 相似文献
8.
自动驾驶技术的快速发展,导致对交通标志检测技术的要求日益提高.为解决YOLOv7算法在识别小目标时误检、漏检等问题,本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC.首先通过K-means++聚类算法对交通标志数据集进行聚类,获得适用于检测交通标志的锚框;其次在YOLOv7主干特征提取网络中引入坐标注意力机制,将交通标志的横向和纵向信息嵌入到通道中,使生成的特征信息具有交通标志的坐标信息,加强有效特征的提取;最后在加强特征提取网络中引入空洞空间金字塔池化,捕获交通标志多尺度上下文信息,在保证交通标志小目标分辨率的同时,进一步扩大卷积的感受野.在中国交通标志检测数据集(CCTSDB)上的实验表明,本文算法增强了识别小目标的能力,相较于YOLOv7模型,本文算法的m AP、召回率平均分别提高了5.22%、9.01%,是一种有效的交通标志检测算法. 相似文献
9.
为了实时检测并识别路上的交通标志,针对在不良光照情况影响下小型交通标志的识别精确度较低、误检、漏检严重的问题,提出了一种基于改进YOLOv5的交通标志识别模型.首先在YOLOv5模型的浅层特征图层增加一次concat操作,将浅层的特征信息结合中间特征图层作为一个检测头,有利于小目标交通标志的识别效率.其次将坐标注意力机制添加到YOLOv5模型中,从而提高特征提取的效率.对中国交通标志数据集TT100K进行数据扩充和暗光增强的操作,最后在经过预处理的TT100K数据集上验证本文改进的模型检测效果.实验结果表明本文改进的模型对小目标及昏暗情况的交通标志识别效率有很大的提升.本文改进的YOLOv5模型与最初的YOLOv5模型均在扩充后的数据集上进行训练后的结果相比,在准确率上提升了1.5%,达到了93.4%;召回率提升了6.8%,达到了92.3%; mAP值提高了5.2%,达到了96.2%. 相似文献
10.
论文针对将遥感图像用于目标检测时地面车辆小目标的漏检和虚警问题,基于YOLOv3,对其躯干网络做如下改进:取消多尺度融合,独立地输出各个尺度上的特征图;在每个独立输出的尺度上引入dilation卷积和Inception-ResNet结构.基于VEDAI数据集,进行YOLOv3和改进模型的训练和测试,改进模型对车辆小目标... 相似文献
11.
12.
交通标志检测在自动驾驶、辅助驾驶等领域是一个重要的环节,关乎到行车安全问题。针对交通标志中存在目标小、背景复杂等难点,提出一种基于改进YOLOv5的算法。提出区域上下文模块,利用多种扩张率的空洞卷积来获取不同感受野,进而获取到目标及其相邻区域的特征信息,相邻区域的信息对交通标志小目标检测起到重要补充作用,可以有效解决目标小的问题;在主干部分引入特征增强模块,进一步提高主干的特征提取能力,利用注意力机制与原C3模块结合,使网络更能聚焦小目标信息,避免复杂背景的干扰;在多尺度检测部分,将浅层特征层与深层检测层进行特征融合,可以同时兼顾浅层位置信息与深层语义信息,增加目标定位与边界回归的准确度,更有利于小目标检测。实验结果表明,改进后的算法在交通标志检测数据集TT100K上取得了87.2%的小目标检测精度、92.4%的小目标召回率以及91.8%的mAP,与原YOLOv5算法相比较,分别提升了3.5、4.1、2.6个百分点,检测速度83.3 frame/s;在CCTSDB数据集上mAP为98.0%,提升了2.0个百分点,检测速度90.9 frame/s。因此,提出的改进YOLOv5算法可以有效... 相似文献
13.
为在交通标志检测过程中同时满足精度和速度的需求,建立一种改进的基于区域全卷积网络(R-FCN)的交通标志检测模型。通过K-means聚类算法对数据集进行分析,选择合适的锚点框。对特征提取网络ResNet101进行结构简化,只使用前25层来提取特征,以缩短检测时间。在模型中引入可变形卷积和可变形位置敏感RoI池化层,以提高模型对交通标志的感应能力。模型训练过程中使用在线困难样本挖掘策略从而减少简单样本数量。在交通标志检测数据集GTSDB上的实验结果表明,该模型对交通标志位置信息较敏感,AP50和AP75指标分别达到97.8%和94.7%,检测时间缩至48 ms,检测精度与速度优于Faster R-CNN、R-FCN等模型。 相似文献