首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用电化学测试方法对LY12铝合金的锌系磷化膜的电化学性能进行研究.分别讨论了磷化液中磷酸二氢锌、硝酸锌、氯酸钠及氟化钠质量浓度的变化对磷化膜电化学性能的影响.结果表明,当溶液组成为10g/L磷酸二氢锌、35g/L硝酸锌、2g/L氯酸钠、3g/L氟化钠时,铝合金磷化膜的腐蚀电位最大,腐蚀电流最小,线性极化电阻最大,耐蚀性最好.  相似文献   

2.
为了开发一种适用于工业化的铝合金磷化技术,通过单因素实验研究磷化液各组分含量对磷化膜耐蚀性能的影响,通过正交试验确定磷化液最佳配方,并对工艺参数进行优选。确定磷化液最佳配方及工艺条件为:30 m L/L磷酸,10 m L/L硝酸,12 g/L氧化锌,1.8 g/L氟化钠,1.4 g/L硫酸亚铁,0.6 g/L硝酸镍,2.0 g/L柠檬酸。游离酸度1.0~1.4点,磷化θ为45~55℃,t为6~10 min。结果表明,制备的磷化膜外观均匀致密,呈浅灰至灰色,平均耐硫酸铜点滴t为122 s,膜质量为4.7 g/m~2,耐蚀性能较好。磷化后进行喷漆处理,漆膜耐中性盐雾t为168 h,耐湿热试验大于48 h,磷化膜层与漆膜配套性较好。  相似文献   

3.
采用锌系磷化工艺对钢铁表面进行防护,以提高钢铁表面耐蚀性及与涂层的结合力。以磷化膜外观及耐蚀性为考察指标,通过单因素实验考察了常温锌系磷化液中硝酸铜、柠檬酸、氟化钠、硝酸镍和钼酸钠5种促进剂对磷化的影响。结果表明,各促进剂对磷化膜外观及耐蚀性均有明显的促进作用,其适宜质量浓度为:0.08 g/L硝酸铜,2 g/L柠檬酸,1.2 g/L氟化钠,15 g/L硝酸镍,2 g/L钼酸钠,并探讨了促进剂的磷化作用机理。  相似文献   

4.
研究了稀土铈对中温锌系磷化的影响。通过正交试验确定了最佳的中温锌系磷化工艺,在此基础上,研究了硝酸铈的质量浓度对磷化膜的表面形貌、成分及耐蚀性的影响,并采用计时电位方法对稀土铈在磷化膜形成过程中的行为进行了分析。研究表明:稀土铈能促进磷化膜的形成,促使磷化膜致密,提高磷化膜的耐蚀性。最佳的磷化液组成及工艺条件为:磷酸二氢锌33g/L,硝酸锌95g/L,硝酸镍1g/L,氟化钠1.2g/L,硝酸铈60mg/L,温度65℃,时间10min。在此条件下能获得结晶细致、耐蚀性良好的磷化膜。  相似文献   

5.
选取钢结构连接使用的异形螺栓作为研究对象进行锰系磷化,研究了磷化液中硝酸锰质量浓度、磷酸二氢锰质量浓度以及温度、磷化时间对锰系磷化膜的宏观形貌及耐硫酸铜点滴时间的影响。结果表明:随着硝酸锰质量浓度和磷酸二氢锰质量浓度增加、温度升高及磷化时间延长,锰系磷化膜表面由较粗糙疏松趋于平整致密,然后再变为较粗糙疏松,色泽随之变化,耐硫酸铜点滴时间呈现先延长后缩短的趋势。最佳的硝酸锰浓度为20 g/L、磷酸二氢锰浓度为45 g/L、温度为90℃、磷化时间为20 min,由此获得的锰系磷化膜呈纯黑色,表面平整致密,晶粒之间衔接紧密,主要含有Mn、P和O三种元素,其耐硫酸铜点滴时间达448 s。在相同的中性盐雾实验条件下,未磷化螺栓发生了严重的全面腐蚀,而锰系磷化后螺栓的腐蚀程度较轻,耐蚀性显著提高。  相似文献   

6.
本文在超声波作用下,对钢铁表面进行常温磷化处理,以提高钢铁表面耐蚀性能。研究以磷化膜外观及耐蚀性为考察指标,通过单因素实验,首先考察了常温磷化液中氧化锌、磷酸、硫酸羟胺(HAS)、硝酸锰、柠檬酸等组分对超声磷化的影响,其次考察了磷化方式对磷化膜性能的影响,最后测试了磷化液使用寿命。结果表明,磷化液组成为氧化锌15 g/L、磷酸80 g/L、硫酸羟胺12 g/L、硝酸锰4 g/L、柠檬酸2 g/L时,超声磷化膜外观及耐蚀性最好,此时磷化膜为灰黑色,膜层连续、均匀、致密,耐蚀时间可达217 s;磷化方式中常温超声磷化比常温静止磷化效果更佳,前者外观及耐蚀性比后者优越;磷化液寿命测试发现,当磷化次数超过9次时,制备的磷化膜耐蚀时间开始低于60 s,此时磷化液已经失效,累计磷化面积为0.3 m~2/L。  相似文献   

7.
为提高16Mn钢的耐蚀性,使用添加了硝酸镧的磷化液在16Mn钢表面制备锌-锰系磷化膜,并研究硝酸镧质量浓度对磷化膜的物相组成、表面形貌和耐蚀性的影响。结果表明:硝酸镧对磷化膜的物相组成基本没有影响,但会改变磷化膜表面的平整度和致密性,从而影响其耐蚀性。适当增加硝酸镧质量浓度,使磷化膜表面趋于平整致密,耐蚀性逐步提高。但是,硝酸镧质量浓度过高时磷化膜表面粗糙、致密性降低,导致耐蚀性下降。硝酸镧质量浓度为50 mg/L时制备的磷化膜电荷转移电阻、频率为0.01 Hz的阻抗值以及液滴变色时间均最大,分别达到5.028×103 Ω·cm2、3.12×103 Ω·cm2、186 s,表现出较好的耐蚀性,优于其他磷化膜。原因归结为,适量的硝酸镧可以加快成膜速度,有利于形成紧致密实的磷化膜,具有较强的阻挡腐蚀介质侵蚀能力,从而有效提高16Mn钢的耐蚀性。  相似文献   

8.
为提高磷化膜的装饰效果以满足特殊场合的需要,通过正交试验优化了一种能在常温下获得金黄色磷化膜的磷化液配方,用正交试验极差分析法、目测法和硫酸铜溶液点滴试验分别研究了溶液主要成分、pH、温度及磷化时间等因素对磷化膜外观和耐蚀性的影响。其磷化液组成为:3.0 g/LHO-R-COOH、3.5 g/L促进剂、3.0 g/LNa3PO4.12H2O、4.8 g/LZn2+、1.2 g/LMn(H2PO4)2.2H2O、13.6 mL/L H3PO4。最佳磷化工艺参数:θ=25~31℃,pH=2.34~2.84,t=15~20min。  相似文献   

9.
通过试验对磷化液加热水浴温度与磷化液产渣量的关系进行验证,分析了磷化渣体积浓度与质量浓度间的换算关系,并采用SEM对磷化渣与磷化膜的成膜质量关系进行对比。通过理论分析和试验得出:磷化液加热热水温度低时磷化液产渣量高,并得出磷化渣体积浓度与质量浓度的关系式,磷化膜的致密程度与磷化液含渣量成反比关系。  相似文献   

10.
通过添加亚硝酸钠或硝酸镥作为单一促进剂或两者复配制备复合促进剂对常温锌-锰系磷化液加以改进,并使用改进的磷化液在不同温度下进行实验.比较了使用单一或复合促进剂获得的磷化膜的形貌质量和耐蚀性,同时研究了温度对使用复合促进剂获得的磷化膜的形貌质量和耐蚀性的影响.结果表明:使用复合促进剂(亚硝酸钠1.5 g/L+硝酸镥0.04 g/L)获得的磷化膜耐蚀性明显好于使用亚硝酸钠(1.5 g/L)或硝酸镥(0.04 g/L)作为促进剂获得的磷化膜,其主要原因是复合促进剂能更好地促进磷化成膜,获得了比较致密、平整度较好的磷化膜.温度对使用复合促进剂获得的磷化膜的形貌质量和耐蚀性有较大影响,随着温度从15℃升高到30℃,磷化膜的致密度明显改善,表面粗糙度从0.36μm下降到0.28μm,其耐蚀性逐步提高.采用改进的常温锌-锰系磷化液在合适温度下可以获得耐蚀性较好的常温磷化膜,该磷化膜可以作为电气柜用冷轧板的涂装底层.  相似文献   

11.
以20#碳钢样片为基底材料,采用浸渍提拉法,在经磷化的碳钢样片基底上,制备了膜厚为13(±2)μm的聚四氟乙烯疏水涂层,并对其物理化学性能和腐蚀情况进行了表征.结果表明,普通的磷化碳钢表面,其磷化颗粒晶体尺寸比较粗大,且颗粒分布不均匀;采用磁力搅拌的磷化碳钢表面,其磷化颗粒晶体尺寸细小而致密.所制备的磷化膜由Zn3(P...  相似文献   

12.
在常温工况下,将电化学方法与磷化处理相结合,加速磷化液中各离子的扩散,使磷化时间保持在10 min以内。对电化学磷化方法中的各影响因素进行对比实验后发现,在常温工况下的最优磷化处理条件为马日夫盐浓度30~50 g/L,硝酸锌浓度50~70 g/L,电流密度1.00~1.50 A/dm2,电化学磷化时间5~7 min。在此条件下所制得的结晶型磷化膜综合性能最佳。分析测试表明:磷化膜主要包括O、Zn、P、Mn、Fe元素,且磷化膜耐腐蚀性强,晶体均匀致密,富有层次感,易于涂层材料附着。  相似文献   

13.
采用中温锌-链磷化工艺对建筑结构用Q235钢进行了磷化处理。借助表面粗糙度仪、扫描电镜、能谱仪和电化学工作站等仪器,研究了磷化时间对Q235钢表面锌-镒磷化膜的表面形貌及耐蚀性的影响。结果表明:锌-镒磷化处理能改善Q235钢的耐蚀性。磷化膜主要由Zn、Fe、P、Mn、C和O元素组成。随着磷化时间的延长,磷化膜的表面形貌发生变化,表面粗糙度增大,耐蚀性先变好后变差。当磷化时间为25 min时,磷化膜呈岩石状形貌,耐蚀性最好。  相似文献   

14.
以硝酸锌、硝酸铝为前体,尿素为沉淀剂,采用水热法在泡沫镍表面原位生长锌基有序微纳米片状电极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜等手段对合成产物的结构和形貌进行了表征。研究结果表明,产物为少量铝掺杂的Zn4-xAlx(OH)6CO3·H2O层状双金属氢氧化物,形貌为正六边形片状结构,直径为1~2 μm,厚度为80~200 nm。以合成的锌基复合电极为工作电极,采用三电极体系进行电化学性能测试,结果显示电极呈现典型的赝电容性质,电流密度为5 A/g条件下电极质量比电容仍高达1 022.3 F/g。  相似文献   

15.
以薄法兰盘为研究对象,开展了中温锌-钙系磷化工艺研究。分别采用目测法和扫描电子显微镜对磷化后的薄法兰盘的宏观形貌和微观形貌进行了表征,采用划格法对磷化膜的结合力进行了检测,并通过盐水浸泡试验对磷化膜的耐蚀性进行了测试。结果表明:锌-钙系磷化膜呈灰黑色,覆盖完整且与基体结合牢固,晶粒大小均一;磷化后的薄法兰盘的耐蚀性较磷化前的明显提高,主要归功于磷化膜均匀且牢固地附着在基体表面,能阻碍腐蚀介质侵蚀基体。  相似文献   

16.
为提高碳钢的耐蚀性与冷加工性能,采用电解磷化法制备了锌系电解磷化膜,通过盐雾试验、Tafel曲线及交流阻抗等方法研究了电解磷化工艺对锌系电解磷化膜耐蚀性的影响,并通过X-射线衍射仪分析了电解磷化膜的成分。结果表明,磷化膜成分为Zn_3(PO_4)_2、Fe_3(PO_4)_2,在Jκ为45 A/dm~2,磷化t为10 s,θ为60℃的条件下,电解磷化膜盐雾试验35 h不锈蚀。  相似文献   

17.
A new method through intercalation and exfoliation of VOPO4·2H2O crystallites in primary alcohol (1-propanol or 1-butanol), followed by reduction with the alcohol, have been investigated for the preparation of catalyst precursor. Lamellar compounds, consisting of V4+, P5+ and alkyl group with thin film-like morphology, were formed and was characterized by means of XRD, IR, TG/DTA, and elemental analysis. The chemical formula of the precursor obtained by exfoliation–reduction in 1-butanol was shown to be VO{(n-C4H9)0.16H0.84}PO4·0.8H2O. On the other hand, a direct reduction of VOPO4·2H2O in the alcohol gave a mixed phase shown by (VOHPO4·0.5H2O)0.3(VO{(n-C4H9)0.3H0.7}PO4·3H2O)0.7 comprising plate-like microcrystallites. These precursors transformed to (VO)2P2O7 phase during an activation process at 703 K in the presence of a mixture of n-butane 1.5% and O2 17% in He balance. The obtained (VO)2P2O7 through the exfoliation–reduction was well crystallized and consisted of thin flaky crystallites. It was found that (VO)2P2O7 thus prepared through the exfoliation–reduction was highly active and selective for oxidation of n-butane.  相似文献   

18.
磷石膏(PG)和铜尾渣(CSS)是磷化工和有色冶炼行业中产生的两种固废,含有大量可迁移性有害物质,在堆存过程中能对环境造成污染。向PG、CSS混合渣中添加CaO作为额外钙源、NaOH作为激发剂,加入约30%(质量分数)的水,搅拌均匀,通过机械压模制成固结体(PG-S),经过抗压测试和毒性浸出试验,结果表明:PG-S抗压强度可达到14.8 MPa; PG中的主要污染物$PO^{3-}_{4}$、F-的固定率分别达到99.87%和92.13%,重金属锌、铅等有害物质的浸出浓度均能满足《污水综合排放标准》(GB 8978—1996)要求,实现了对PG、CSS的高效耦合固定/稳定化处理。通过XRD、SEM表征分析证明PG、CSS中的有害物质通过生成不溶物和胶凝包裹吸附而被固定。  相似文献   

19.
研究了磷化温度对汽车用冷轧钢板表面锌-锰磷化膜的外观及耐蚀性的影响。结果表明:锌-锰磷化膜主要由Zn、Zn3(PO4)2和MnHPO4组成。当磷化温度低于50℃或超过65℃时,磷化膜的外观和耐蚀性都不太理想;随着磷化温度的升高,磷化膜的色泽趋于均匀,耐蚀性逐渐改善。当磷化温度为60℃时,磷化膜呈深灰黑色且色泽比较均匀,耐硫酸铜点滴时间达到75 s,在盐水中浸泡24 h后磷化膜表面的腐蚀坑数量较少,其耐蚀性明显比未磷化的冷轧钢板的耐蚀性好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号