共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
本文提出了一种改进粒子群优化算法。在进化中增加了个体间的协作机制,这种改进后的学习行为更符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。最后将该方法用于PERT网络工期一费用模型求解,数字仿真表明了算法的有效性。 相似文献
3.
4.
基于改进粒子群优化算法的火电厂机组负荷分配 总被引:2,自引:0,他引:2
以坑口电厂厂级监控信息系统的机组负荷在线优化分配功能模块为应用背景,针对模块所运用的基本粒子群优化算法在优化过程中容易陷入局部收敛、收敛速度慢的缺点,提出一种基于惯性权重非线性减小策略的改进粒子群优化算法,使惯性权重呈对数减小;测试函数仿真结果表明,改进粒子群优化算法在收敛速度和寻优精度方面,优化性能均优于基本粒子群优化算法;通过MATLAB与Visual C++混合编程,开发了机组负荷在线优化分配功能模块,提高了算法的计算效率和工程应用价值。 相似文献
5.
针对锌电解过程各参数之间耦合严重、能耗高、建模困难,研究了锌电解电流效率与各工艺过程参数之间关系的数学模型,提出了一种改进的粒子群优化算法(IPSO)进行模型参数估计,该算法在粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,避免了算法陷于局部最优解,改善了优化算法性能;以锌电解过程实验数据为样本,采用改进的粒子群优化算法对模型进行参数估计和检验,并与基本粒子群算法和BP神经网络模型进行比较,仿真结果证明了模型的有效性。 相似文献
6.
基于改进粒子群算法的电力系统无功优化 总被引:1,自引:0,他引:1
针对传统粒子群算法易陷入局部最优解、收敛速度慢的缺点,提出一种基于信息分享策略的改进型粒子群算法,并首次将其应用于电力系统无功优化问题.改进的粒子群算法通过调整学习因子而获得合理有效的收敛速度;采用信息分享策略以保证种群的多样性;在位置的更新过程中加入扰动项,从而避免算法陷入局部最优解.用改进型粒子群算法对IEEE-14节点标准测试系统进行无功优化计算,实验结果表明:与其他算法相比,该改进粒子群算法具有较强的全局寻优能力,且收敛速度快,鲁棒性好,能有效地解决电力系统无功优化问题. 相似文献
7.
提出一种具有全局优化能力的改进粒子群算法,将信道分配和比特功率分配问题相结合,实现电力线信道下多用户自适应OFDM比特功率分配。在典型低压电力线通信信道环境下的matlab仿真结果表明:本文提出的算法可行且有效,适合多用户通信环境,节省了多用户自适应OFDM系统的运算时间,降低了发射功率,且算法简单易操作,有望应用于更广泛的优化问题。 相似文献
8.
针对微生物连续发酵生产1,3-丙二醇动力学模型,以稳态时刻1,3-丙二醇的浓度最大化为目标函数,建立以注入甘油浓度和稀释速率为优化变量的优化模型。证明了该模型最优解的存在性。进一步,构造了改进的粒子群优化算法求解此优化模型。数值结果表明稳态时刻1,3-丙二醇的浓度比已有结果有显著提高。 相似文献
9.
介绍防空作战过程中武器目标分配(WTA)问题,分析了武器目标分配问题研究的基本内容,建立了武器目标分配的数学模型,利用粒子群算法进行求解,给出武器目标分配问题的Matlab程序. 相似文献
10.
改进的粒子群优化算法 总被引:1,自引:0,他引:1
将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心,并且按一定概率选择其他粒子的个体极值点,设计了一种新的粒子群优化算法.新算法的学习行为符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解.实验结果表明了算法的有效性. 相似文献
11.
针对基本粒子群优化算法(particle swarm optimization, 简称PSO)存在的早熟收敛问题,提出了一种保持粒子活性的改进粒子群优化(IPSO)算法。当粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,使粒子能够有效地进行全局和局部搜索。通过对4种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。 相似文献
12.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
13.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
14.
为解决传统粒子群算法收敛精度低、收敛速度慢和易陷入局部最优的问题,提出了一种多策略融合的改进粒子群算法。首先,设计了一种基于中垂线算法的游离粒子位置更新方法,加快了游离粒子的收敛速度;其次,设计了一种在最优粒子附近生成爆炸粒子的策略,以增强算法的寻优精度和寻优速度,为适应前两个策略,还设计了一种仅依靠全局最优粒子位置的粒子速度更新策略;最后,将基于概率分层的简化粒子群优化算法的惯性权重和粒子位置更新方法用于本算法。与其他五种改进粒子群算法进行了对比实验,结果表明提出的改进算法无论是处理低维问题还是高维问题表现均具有较大优势,性能更优越。 相似文献
15.
提出了一种基于改进粒子群优化算法的多用户检测器。介绍了最佳多用户检测模型以及粒子群优化算法的基本思想。进行了理论依据和仿真性能分析。仿真结果表明:该检测器在误码率性能和抗“远近”效应上优于传统检测器和基于粒子群优化得多用户检测器,计算复杂度较低。 相似文献
16.
研究自动化立体仓库固定货架的货位分配问题,货位分配综合考虑了货架的稳定性和出入库效率,建立了货位优化的数学模型,提出了基于Pareto最优解的改进粒子群算法(PSO)来解决此问题的方法。在优化过程中引用了置换的概念来计算粒子的速度,并且在算法中采用小生境技术提高非劣解集的分散性,用存档群体保存了非劣解。仿真实验证明,此优化策略可以有效地解决自动化立体仓库的货位分配问题。 相似文献
17.
吴涤单 《数字社区&智能家居》2014,(6):1238-1241
针对传统的k-means算法处理离散型数据的不足以及选取初始聚类中心的随机性等缺点,提出了一种基于改进的粒子群优化k-means算法,根据文中提供的优化算法寻找初始聚类中心后,在阀值范围内进行数据样本间的迭代更新,直至聚类中心稳定。经过实验结果验证分析表明,经过改进的粒子群优化k-means算法与传统的k-means算法相比,更具有良好的聚类收敛效果,聚类效果也相对稳定。 相似文献
18.
19.