首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在多馈入的电网换相换流器型高压直流(LCC-HVDC)输电系统中,交直流系统以及不同LCC-HVDC之间的复杂耦合作用造成换相失败形态产生变化,使得LCC-HVDC的控制保护系统面临挑战.目前,由电网故障直接引发的多回LCC-HVDC同时换相失败现象受到关注,但是换相失败过程中LCC-HVDC系统之间的相互影响却被忽视.LCC-HVDC换相失败后的状态和输出特性急剧变化,通过交流系统的耦合势必对相邻LCC-HVDC产生直接的影响.为此,文中研究了LCC-HVDC换相失败对相邻健全LCC-HVDC的影响,分析了受端弱电网故障下多馈入LCC-HVDC系统中相继换相失败的产生机理和换相失败期间控制系统作用下逆变站的动态无功特性;推导了计及控制系统响应的逆变站无功功率表达式,解析了相邻LCC-HVDC无功交换特性,分析了相继换相失败的特征和影响因素.最后,通过标准模型验证了理论分析的正确性.  相似文献   

2.
建立了含LCC和VSC换流器的混合双馈入直流系统电磁暂态仿真模型。基于换相失败免疫性指标,在VSC-HVDC采用定交流电压控制条件下,分析了LCC-HVDC在3种不同条件下的换相失败抵御能力。1)电流-关断角模式:整流侧定直流电流控制,逆变侧定关断角控制。2)电流-电压模式:整流侧定直流电流控制,逆变侧定直流电压控制。3)功率-关断角模式:整流侧定直流功率控制,逆变侧定关断角控制。同时,改变VSC-HVDC和LCC-HVDC之间的联络线长度,研究了电气距离对LCC-HVDC换相特性的影响。基于故障恢复时间指标,对比了上述3种控制模式下LCC-HVDC的短路故障恢复特性。研究发现LCC和VSC电气联系紧密时,LCC采用电流-电压模式时其换相失败抵御能力和故障恢复能力优于其余2个控制模式,电气联系不紧密时则相反。结论可以为混合双馈入直流输电系统中LCC-HVDC控制方式及馈入落点的选取提供理论指导。  相似文献   

3.
针对由彼此落点接近的一条基于模块化多电平换流器型高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)线路和一条电网换相换流器型高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)线路所构成的混合双馈入直流输电系统,基于多变量反馈控制理论建立可定量分析和评估MMC-HVDC与LCC-HVDC控制系统之间交互影响的等效独立控制通道。在此基础之上,定量分析评估LCC定关断角控制器、锁相环以及MMC锁相环、外环控制器、环流抑制器对MMC-HVDC与LCC-HVDC控制系统交互作用及小干扰稳定性的影响。最后,在PSCAD/EMTDC上搭建混合双馈入直流输电系统的电磁暂态详细仿真模型,仿真验证理论分析结果的有效性。  相似文献   

4.
多端直流输电和直流电网技术是解决新能源并网的有效技术手段之一,直流变压器是连接不同类型和不同电压等级直流输电系统、构建直流电网的关键设备。该文提出一种适用于连接基于电网换相换流器(line commutated converter,LCC)的高压直流输电(high voltage direct current,HVDC)系统和基于电压源换流器(voltage source converter,VSC)的高压直流输电系统的直流互联变压器。当LCC-HVDC工作在常态潮流工况下,提出的直流互联变压器与已有的文献相比,交流环流小,效率高。当LCC-HVDC工作在反转潮流工况下,直流互联变压器能够跟踪改变LCC侧电压极性。详细分析直流互联变压器在不同工况下的工作原理、调制方式和控制策略,并搭建基于Matlab/Simulink的仿真模型,验证理论分析的正确性。  相似文献   

5.
当直驱风电场距离电网换相型高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)的整流站较近时,两者间的次同步交互作用机理及特性尚不明确,现有分析方法难以揭示扰动传递过程及子系统间的耦合关系。针对上述问题,该文首先建立直驱风电场经LCC-HVDC送出系统的线性化模型,并基于系统闭环互联传递函数框图揭示次同步频率扰动在直驱风电场与LCC-HVDC之间的传递路径。然后,通过阻尼重构分离出次同步交互作用对次同步振荡(sub-synchronous oscillation,SSO)模式阻尼的影响,并分析控制器参数对SSO模式阻尼的影响。结果表明,直驱风电机组直流电容主导的SSO模式存在不稳定风险;直驱风电场与LCC-HVDC之间的扰动传递路径呈现"8"字型耦合关系,导致两者间存在次同步交互作用;直驱风电机组外环、LCC-HVDC定电流控制器的比例系数增大或积分系数减小时,SSO模式阻尼增大。  相似文献   

6.
随着高压直流(HVDC)输电技术的发展,混合直流输电已经成为一种趋势。分析了逆变侧交流三相故障造成混合双馈入直流中电网换相换流器高压直流(LCC-HVDC)双桥换相失败的机理,区别了造成双桥连续换相失败与双桥非连续换相失败的主要影响因素。通过对LCC-HVDC在不同交流故障程度及故障触发时刻下仿真分析,研究了这2个因素对换相失败类型的影响,并发现交流系统轻微故障下的电压波形畸变是双桥非连续换相失败现象的主要成因。通过单纯形算法对混合双馈入系统中电压源换相换流器高压直流(VSC-HVDC)控制参数进行优化,抑制了在交流系统轻微故障情况下发生的LCC-HVDC双桥非连续换相失败。  相似文献   

7.
交流电网故障引发线路换相换流器高压直流(Line Commutated Converter High Voltage Direct Current, LCC-HVDC)换相失败,改变了原有交流电网工频变化量方向保护动作特性。针对这一问题,建立了由电压源换流器高压直流(Voltage Source Converter HVDC, VSC-HVDC)系统与LCC-HVDC系统组成的混合多馈入直流(bybrid multi-infeed HVDC,HMIDC)输电系统模型,并与馈入同一交流电网的单条LCC-HV  相似文献   

8.
柔性直流输电(VSC-HVDC)馈入受端交流电网后对原有常规直流(LCC-HVDC)将产生重要影响。基于含VSCHVDC和LCC-HVDC的混合双馈入直流系统,分析了计及VSC-HVDC影响多馈入有效短路比指标,量化了VSCHVDC馈入点及馈入电流对LCC-HVDC有效短路比的提升作用。结合VSC-HVDC稳态运行目标及LCC-HVDC的暂态电压支撑需求,设计了一种可最大程度提高多馈入有效短路比的VSC-HVDC控制策略,通过PSCAD中的数字仿真验证了该策略的有效性。  相似文献   

9.
双馈风力发电的高渗透率降低了电网的等效惯性和一次调频能力,这一问题对于弱电网而言愈发突出。因此,在惯性降低的弱电网下,双馈风力发电机(doubly-fed induction generator,DFIG)频率的自动调整成为其控制系统重要目标之一。定子绕组匝间短路(stator winding inter-turn short circuit,SWITSC)是双馈风机的一种典型故障,直接影响机组的安全、稳定运行。但是,计及SWITSC故障的DFIG机组的调频策略与弱电网稳定性分析尚未见诸报道。为此,在计及SWITSC故障的DFIG机组模型上附加频率惯性控制和下垂控制,依据旋转质块的动态特性建立SWITSC故障下DFIG机组、弱电网的小信号模型,通过特征值分析揭示了两种频率控制策略及SWITSC故障本身对弱电网频率稳定性的影响,并对弱电网模式切换和负荷突变进行了敏感性研究,最后利用仿真验证了理论分析的正确性。  相似文献   

10.
混合双馈入直流输电系统中VSC-HVDC能够改善LCC-HVDC的换相失败抵御能力。基于PSCAD/EMTDC搭建了混合双馈入直流输电系统的电磁暂态仿真模型,研究了当VSC配备2种典型无功控制器,即定无功功率控制器和定交流电压控制器情况下,LCC-HVDC的换相失败抵御能力。通过分析LCC交流母线接地故障情况下系统的运行特性,揭示了VSC-HVDC改善LCC-HVDC换相失败问题的机理。在此基础上,分析了VSC-HVDC对LCC-HVDC换相失败问题改善程度的主要影响因素,研究了VSC与LCC电气距离、VSC控制器调节速度变化时LCC-HVDC的换相特性和故障后直流功率恢复速度。结果表明:结论可以为相关工程的设计和分析提供理论指导。  相似文献   

11.
海上风电场以其储量丰富、风力稳定、干扰少等特点,受到越来越多的关注,是未来风力发电发展利用的大趋势。对比分析了适用于海上风电场并网的高压交流(HVAC),常规高压直流(LCC-HVDC)和柔性直流输电(HVDCFlexible)3种并网方式,并着重探讨了几种柔性直流输电并网的具体方案以及适用于海上风电场的直流换流站拓扑结构。  相似文献   

12.
对由双馈风电机组组成的海上风电场采用混合高压直流输电技术并网时风电场内部的电压和频率控制进行了研究。混合高压直流输电系统由双桥十二脉波不控整流换流器(DBC)、模块化多电平换流器和高压直流输电线路组成。首先,通过深入的理论分析阐明当由双馈风电机组组成的海上风电场采用混合高压直流输电技术并网时,风电场内部的电压可以自动维持在一个合适的范围内并随双馈风电机组输出有功功率的变化而变化。在此基础上,设计了双馈风电机组转子侧换流器的控制器以实现对风电场内部交流系统频率的控制,同时实现了双馈风电机组输出有功功率的最大功率点跟踪。为防止岸上公共连接点发生三相接地短路故障时基于DBC的高压直流输电系统发生过电压,设计了故障时双馈风电机组的控制策略。最后,对建立的采用混合高压直流输电技术并网的海上风电场模型进行了数字仿真,仿真结果验证了理论分析的正确性和所提出控制策略的有效性。  相似文献   

13.
由基于线性换流器高压直流输电系统(LCC-HVDC)和基于电压源换流器高压直流输电系统(VSC-HVDC)共同构成的混合直流输电系统,其故障特性与传统直流输电系统不同。针对此问题,对混合直流输电系统中直流侧故障暂态电流特性进行了研究。首先建立了送端电网采用LCC型换流站、受端电网采用VSC型换流站的两端混合直流输电系统,利用拉普拉斯变换定理推导了直流侧故障时的等效电路,解析了LCC侧和VSC侧直流故障电流简易表达式。其次,在简易表达式的基础上,充分考虑送端LCC侧换流站的触发角动态变化过程和受端VSC侧换流站交流电流的馈入,进一步解析了两侧精确的故障电流表达式。然后,从故障电流幅值、谐波等方面对比分析了三种高压直流系统中直流侧故障电流的变化特征。最后,通过MATLAB/Simulink仿真验证了所提故障电流解析表达式的正确性。  相似文献   

14.
基于电压源变流器型的高压直流输电(VSC-HVDC)是远海风电场的常用并网方式,同时可用于联接弱受端系统,但接入后的运行特性还有待研究。该文建立了远海风电场经VSC-HVDC联接弱受端系统模型,基于安全稳定运行约束条件,以短路比(SCR)作为受端系统强弱的判定指标,充分考虑了双馈风机(DFIG)无功控制方式和受端系统阻抗角的影响,得出不同风电场出力对应的临界短路比(CSCR)。在DIgSILENT/ PowerFactory软件中进行风速波动小干扰和暂态稳定性仿真,结果表明以双馈风机作为发电机模型联接的弱受端系统短路比大于1.6为宜,并给出降低临界短路比的补偿措施,对实际工程有一定的指导作用。  相似文献   

15.
王华伟  李新年  雷霄  林少伯 《电力建设》2015,36(11):115-122
高压直流输电系统受端换相失败时,整流侧换流器短时间内会从送端交流系统吸收大量无功功率,在送端交流系统较弱或其他不利条件下可能产生电压不稳定或保护误动作等问题。以银东直流工程为例,分析了受端换相失败后直流系统的响应特性,研究了直流逆变站换相失败导致的送、受端交流系统故障耦合机理,并通过仿真给出了弱送端系统条件下的电压波动情况,结论对直流工程建设调试和交流电网调度运行具有重要的指导意义。  相似文献   

16.
基于双馈机组的风电场不同于基于同步发电机的传统的发电厂,其高压直流输电技术具有一定的特殊性。本文对用于大容量双馈风电场的高压直流输电技术进行了概述。首先介绍了高压交流和直流输电技术针对海上风电应用的优缺点。然后对比了传统电力系统中的两种经典高压直流输电技术,即相控换流高压直流输电与轻型直流输电技术,并对二者应用于双馈风电场后的优缺点进行了分析。为克服其中存在的弊端,最后介绍了一种结合了静止同步补偿器(STATCOM)、相控换流器以及全控电流源型逆变器的混合型高压直流输电拓扑。  相似文献   

17.
为解决传统电网换相高压直流输电与电压源换流器高压直流输电在直流电网中的混联问题,针对一种新型的混联直流输电系统进行了研究。该系统是整流侧采用模块化多电平换流器、逆变侧采用晶闸管换流器的四端双极混联直流电网。推导了该系统稳态时的数学模型,针对其逆变侧易发生换相失败的问题,设计了新的抑制换相失败的协调控制策略。在整流侧换流站中通过低压限压和低压限功率控制的配合,抑制逆变侧故障电流的增大,从而减小换相失败发生的概率。在PSCAD/EMTDC中对该混联直流电网的稳态和暂态特性进行了仿真分析,仿真结果证明了所提控制策略的有效性。  相似文献   

18.
结合中国高压直流输电现状和直流电网技术的发展,提出了利用面对面式DC/DC变换器互联不同电压等级的基于电网换相换流器(LCC)的高压直流(LCC-HVDC)系统的方案,总结了互联系统的优势并提出了一种依赖通信的适用于互联系统的控制器。基于两条实际LCC-HVDC线路背景,在PSCAD/EMTDC中搭建了利用±500 kV/±800 kV,1 000 MW面对面式DC/DC互联一条±500 kV,3 000 MW线路和一条±800 kV,7 200 MW线路的仿真模型。仿真结果说明,常规LCC控制不适用于互联系统,且验证了提出的控制器的有效性。所述控制器可在对原有LCC换流站控制改动最小的前提下实现互联系统的稳定运行。  相似文献   

19.
考虑在风电场交直流混合并网系统中风电场的功率差额可以沿交流线路传递给主网,风电场和主网都存在频率稳定问题,提出储能与柔性直流附加控制参与系统频率调节,优化风电场和主网频率特性。在风电场侧柔性直流换流站中加入基于风电场频率变化的柔性直流频率附加控制,以改善风电场频率特性;将储能系统通过换流器并联在风电场和主网间直流线路上,弥补风电场侧直流附加控制对主网的频率恶化作用,并改善主网频率特性;建立了储能与柔性直流附加控制共同作用下的风电场交直流混合并网系统频率模型。算例分析表明,通过储能与柔性直流附加控制的配合,能有效减少风电场功率平衡被破坏时风电场和主网的频率波动幅度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号