共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
提出了一种基于网格技术的高维大数据集离群点挖掘算法(OMAGT)。该算法针对高维大数据集的分布特性,首先采用基于网格技术的方法寻找出聚类区域,并删除聚类区域内不可能成为离群点的聚类点集,然后运用局部离群因子(LOF)算法对剩下的点集进行离群点挖掘。OMAGT算法较好地实现了聚类信息的动态释放,将保留的离群点挖掘信息控制在一定的内存容量范围内,提高了算法的时间效率和空间效率。理论分析与实验结果表明OMAGT算法是可行和有效的。 相似文献
3.
针对已有的基于网格的离群点挖掘算法挖掘效率低和对于大数据集适应性差的问题,提出基于数据分区和网格的离群点挖掘算法。算法首先将数据进行分区,以单元为单位筛选非离群点,并把中间结果暂存起来;然后采用改进的维单元树结构维护数据点的空间信息,以微单元为单位进行非离群点筛选,并通过两个优化策略进行高效操作;最后以数据点为单位挖掘离群点,从而得到离群数据集合。理论分析和实验结果表明了该方法是有效可行的,对大数据集和高维数据具有更好的伸缩性。 相似文献
4.
5.
基于距离的离群点挖掘通常需要O(N2)的时间进行大量的距离计算与比较,这限制了其在海量数据上的应用。针对此问题,提出了一个带剪枝功能的离群点挖掘算法。算法分为两步:在对数据集进行一遍扫描后,剪枝掉大量的非离群点;然后对余下的可疑数据实施一种改进的嵌套循环算法,以每个数据点与其k个最近邻点的平均距离作为离群度,确定前n个离群点。在真实数据和合成数据集上的实验结果均表明,该算法在获得高命中率的同时仍保持低误警率。与相关算法相比,其具有较低的时间复杂性。 相似文献
6.
7.
当前的数据集离群点挖掘方法一般设置为引导式结构,挖掘效率较低。为此,提出基于谱聚类算法的人力资源数据集离群点快速挖掘方法。先预处理多维人力资源数据集,采用多节点机制提高挖掘的效率,然后构建谱聚类测算离群点快速挖掘模型,采用回归处理实现快速挖掘。测试结果表明,相同的测试周期中,文章提出的方法最多可以挖掘27次,说明在谱聚类算法的辅助下,该算法的挖掘效率更高。 相似文献
8.
9.
《计算机应用与软件》2018,(3)
DV-Hop算法在无线传感器网络节点分布不均匀时定位误差较大。针对上述问题,利用离群点检测算法提高计算未知节点坐标的精度。在采用多边测量算法估计未知节点的坐标位置时用离群点检测算法LOF对未知节点的估计坐标进行分析和筛选,最终确定未知节点位置。仿真实验表明,该方法能提高节点的定位精度,减小定位误差。 相似文献
10.
11.
离群数据挖掘是数据挖掘领域的一个研究分支,而聚类算法分析则是进行离群数据挖掘的重要研究方法之一。文中首先分析研究离群数据挖掘方法,对多个离群数据挖掘算法进行分析比较,讨论各自的优点和不足,同时针对高维空间数据的特点,分析挖掘高维空间数据中的离群点方法。其次对聚类分析算法进行讨论,分析一种基于网格和基于密度的聚类方法——聚类高维空间算法(CLIQUE算法),运用它可以更好地挖掘高维空间中的离群数据。提出了CLIQUE算法的有待改进的思想,为以后的研究指明方向。 相似文献
12.
异常挖掘是数据挖掘的重要研究内容之一,对于不完全数据会面对双重的困难.首先将用于缺失数据填充的EM算法和MI算法推广到混合缺失情形,并根据Weisberg的不完全数据填充理论,提出了RE算法,然后通过将聚类分析与向前搜索算法结合起来,获得了比单纯的向前搜索法更优越的算法.最后,在上述填充算法的基础上探讨了不完全数据的异常挖掘.理论和实例分析均表明,基于不完全数据的异常挖掘算法是有效可行的. 相似文献
13.
随着移动网络、智能终端的迅猛发展,基于位置的服务LBS(Location-based Service)越来越热门,因此基站位置信息的正确与否成为关注的重点.针对基站地理位置存在部分错误这一现象,提出了基于网格概率的离群点检测算法来核查错误的基站.首先,根据基站分布的规则将数据空间分成若干网格单元;其次,根据用户轨迹签到信息关联出其在动态时间范围内经过的基站序列,将基站序列映射到网格中,计算出临近网格单元集合;最后,根据基站分布特点对网格单元内目标基站的临近基站求隶属概率,筛选出离群点,即错误的基站.实验表明,该算法的时间复杂度低且核实准确率较高. 相似文献
14.
文中基于对传统Apriori算法的改进,提出了一种基于规则的离群数据挖掘算法。该算法在数据结构中增加标识符链表后,计算了1-离群条件集的幂集,使得仅需对原数据库进行一次扫描,从而降低了该算法的时间复杂度。同时由于兴趣度的引入使得挖掘的结果也更有针对性和目的性。该算法被应用于某求职系统的离群数据分析中,实验表明该算法是可行有效的。 相似文献
15.
文中基于对传统Apriori算法的改进,提出了一种基于规则的离群数据挖掘算法。该算法在数据结构中增加标识符链表后,计算了1-离群条件集的幂集,使得仅需对原数据库进行一次扫描,从而降低了该算法的时间复杂度。同时由于兴趣度的引入使得挖掘的结果也更有针对性和目的性。该算法被应用于某求职系统的离群数据分析中,实验表明该算法是可行有效的。 相似文献
16.
17.
IncLOF:动态环境下局部异常的增量挖掘算法 总被引:12,自引:1,他引:12
异常检测是数据挖掘领域研究的最基本的问题之一,它在欺诈甄别、贷款审批、气象预报、客户分类等方面有广泛的应用,以前的异常检测算法只适应于静态环境,在数据更新时需要进行重新计算,在基于密度的局部异常检测算法LOF的基础上,提出一种在动态环境下局部异常挖掘的增量算法IncLOF,当数据库中的数据更新时,只对受到影响的点进行重新计算,这样可以大大提高异常的挖掘速度,实验表明,在动态环境下IncLOF的运行时间远远小于LOF的运行时间,并且用户定义的邻域中的最小对象个数与记录数之比越小,效果越明显. 相似文献
18.
19.
针对大多数离群数据检测方法依赖于用户确定参数以及维灾现象,给出了一种基于基尼指标加权的离群子空间与离群数据挖掘方法.该方法通过计算各个维上去一划分的基尼指标值来生成数据对象的离群子空间及属性权向量,在子空间中采用基于统计离群数据挖掘的思想来挖掘离群数据;不需输人参数,结果更具客观性,并且能够适应高维离群数据挖掘;最后采用恒星光谱数据集,验证了可行性和有效性. 相似文献
20.
一种基于聚类和快速计算的异常数据挖掘算法 总被引:1,自引:0,他引:1
传统局部离群因子(LOF)算法在动态增量数据库环境下,进行二次异常数据挖掘需重新计算所有数据对象局部偏离因子,存在效率较低的问题。为此,提出一种基于聚类和快速计算的异常数据挖掘算法。对传统DBSCAN算法进行改进,并且在该改进算法聚类的基础上,仅对部分数据对象计算局部偏离因子。实验结果表明,该算法在动态增量数据库环境下,与 LOF 与 lncLOF算法相比,不仅计算时间效率高,而且能提高挖掘异常数据的精度。 相似文献