共查询到18条相似文献,搜索用时 77 毫秒
1.
蚁群优化算法的研究和应用已取得了不少重要成果,然而在大规模优化应用中还存在搜索时间长的问题,为此研究了一种基于细粒度模型的并行蚁群算法。实验结果表明,该算法与最新的改进算法相比,搜索速度提高数十倍至数百倍以上。 相似文献
2.
3.
为了改进蚁群优化算法的收敛速度,研究了一种基于粗粒度模型的并行蚁群优化算法,该算法将搜索任务划分给q个子群,由这些子群并行地完成搜索,可使搜索速度大幅度提高。实验结果表明,用该算法求解TSP问题,收敛速度比最新的改进算法快百倍以上。 相似文献
4.
随着通信技术的不断发展,越来越多的无线通信网络标准被制定出来。为了保护投资,平滑过渡,各种不同的无线通信网络必然将相互融合。终端在这样一个多网络覆盖的区域中如何选择所使用的网络就成为了一个研究的热点。然而,在已有的诸多网络算法中,无一不存在着参加判决的参数过多、算法过于复杂而导致终端的电力和处理能力消耗过多、没有较好考虑网络负载均衡的缺陷并且没有考虑终端的反馈机制。简要介绍异构融合网络场景下网络选择的相关内容,包括异构融合网络场景,已有的网络选择算法,蚁群优化及其特点。在此基础上,提出了一种全新的基于蚁群模型的网络选择算法(ANSA)。利用Matlab对所提出的ANSA的性能进行了仿真分析,与TOPSIS算法进行对比,证明了ANSA比已有的网络选择算法具有更好的负载均衡性能并且降低了终端的复杂度。 相似文献
5.
6.
7.
GPU拥有几百GFlops甚至上TFlops的浮点计算能力,将GPU应用于粒子模拟,可有效提高大规模粒子模拟的速度,降低计算成本。本文利用GPU加速三维激光等离子体模拟算法LARED-P,提出了基于CPU+GPU的任务划分、GPU上任务分解、大规模计算核心的分解方法,结合使用了寄存器、纹理内存对算法进行加速。在双精度条件下,移植后的算法在工作频率为1.44GHz的NVIDIA Tesla S1070的单个GPU上获得了相当于主频2.4GHz的Intel(R)Core(TM)2 Quad CPU Q6600单核的6倍加速比。 相似文献
8.
基于蚁群系统的多选择背包问题优化算法 总被引:7,自引:0,他引:7
提出了一种用蚁群系统求解多选择背包问题的优化算法。该方法利用蚂蚁算法所具有的正反馈特性,再结合变异参数,使算法既有较快的求解速度又有较高的求解精度。实验结果表明,采用此算法能快速有效地解决背包问题。 相似文献
9.
图像边缘携带了图像的大部分主要信息。通过对图像进行边缘检测不仅能有效地提取图像信息降低计算的复杂度而且是图像测量、图像分割、图像压缩、模式识别等图像处理的基础。本文尝试将蚁群优化算法(Ant Colony Optimization, ACO)用于图像边缘检测,通过选取经典house图像和SAR机场图像设置阈值进行自适应边缘提取,实现了边缘的精确检测。实验结果显示,该算法能够有效地提取图像目标的轮廓信息,很好保持图像纹理,具有理想的抗干扰性能,保证了检测结果的准确性。 相似文献
10.
基于蚁群优化算法的立体匹配 总被引:1,自引:0,他引:1
立体匹配技术使得通过像点获取景物的距离信息,实现三维立体再现成为可能,是计算机视觉研究中最基本的关键问题之一.本文选择图像的边缘点作为匹配基元.以边缘特征点处的灰度值、梯度的大小和方向、拉普拉斯值作为其属性值,依据立体匹配的约束条件,建立能量函数.在进行图像的立体匹配的过程中,运用蚁群优化算法找寻使能量函数达到最小的路径,从而实现立体匹配.实验证明,该方法具有较强的稳定性,能得到较高精度的匹配结果. 相似文献
11.
12.
13.
蚁群优化算法求解TSP问题研究 总被引:2,自引:0,他引:2
介绍了信息素混合更新的蚁群优化算法,并用来求解TSP问题。混合信息素更新的蚁群优化算法是在蚁群系统(ACS)的基础上改进而成的,它在演化过程中,通过改变信息素的迭代最优更新规则和全局最优更新规则的使用频率,逐渐增加全局最优更新规则的使用频率,从而提高系统收敛的速度和减少系统搜索的导向性,并以Oliver30和att48为例给出了实验结果,说明了该混合算法的有效性。 相似文献
14.
15.
基于蚁群优化算法的NoC映射 总被引:4,自引:0,他引:4
功耗问题正逐渐成为NoC领域的研究热点,很多研究人员都在研究NoC功耗最小化的设计技术。文章采用一种有效的蚁群优化算法实现了NoC映射:在自动映射处理单元的同时,尽可能地减少了系统的通讯功耗。实验结果表明采用蚁群优化算法可以很快地收敛;针对不同的应用,可以减少25%-70%通讯功耗。 相似文献
16.
尽管蚁群优化算法在优化计算中有大量应用,但在大规模优化问题中蚁群算法仍存在搜索时间过长、易于停滞现象等等应用瓶颈。基于这些原因,根据经济学组织交易成本理论,文中提出一种新的通过聚类来降低优化问题规模的蚁群优化算法:基于聚类的蚂蚁优化算法,并从理论上表明比其他蚁群优化算法提高了收敛速度并延迟停滞现象。 相似文献
17.
为了延长无线传感器网络(wireless sensor network,WSN)的生命周期,均衡各个节点间能量消耗,针对现有的WSN路由优化算法存在的问题,提出了一种基于改进蚁群算法的路由优化算法;首先通过对蚁群算法和遗传算法的优劣性比较,在蚁群算法的基础上,结合遗传算法的选择、交叉和变异的操作,从而提高蚁群算法的搜索速度和寻优能力;最优路径评价函数综合考虑节点能耗及节点的剩余能量,使剩余能量多的节点优先参与数据转发,均衡节点间的能量消耗;通过与经典蚁群算法及遗传算法的对比实验表明,随着数据转发轮数增加,改进的蚁群算法能耗小,剩余能量多,网络生命周期明显延长;随着整个网络运行时间的增长,改进的蚁群算法,节点均衡能耗性好,最优路径搜索的成功率也明显优于其他两种算法。 相似文献
18.
蚁群混沌混合优化算法 总被引:2,自引:2,他引:2
为了克服混沌搜索的盲目性,提出了一种蚁群算法和混沌优化算法相结合的混合优化算法,该算法利用蚁群算法中信息素正反馈的思想指导当前混沌搜索的区域。工作蚁群按照信息素的浓度高低,分别按照不同的概率搜索不同的搜索区域,从而可减少混沌盲目搜索的次数。仿真结果表明,该方法能够明显提高混沌优化算法的寻优效率,同时算法的通用性将有所提高。另外,对于含有多个全局最优解的函数,在一次寻优过程中,该算法可以找到全部最优解,这是通常混沌搜索算法所不具备的。 相似文献