首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在全局光照算法中,光子图算法是一种与视点无关的物空间辐射度近似计算方法,提出了一种基于重要度驱动采样的自适应Projection map算法,利用它可以在光子图算法中提高光子发射的有效性和准确性,加快渲染速度并取得更好的图像质量.实验表明,该算法能够有效地减少光源发射光子的次数,提高光子的命中率,具有相当的应用价值.  相似文献   

2.
通过对渐进式光子映射算法进行扩展,提出了一种基于自适应光子发射的渐进式光子映射算法.渐进式光子映射是一个多遍的全局光照算法,通过不断发射光子并渐进更新场景各点的光能估计能使其最终能收敛到无偏差的结果.由于渐进式光子映射完全使用密度估计来计算各点的光能,因此其收敛速度受光子分布影响较大.利用渐进式光子映射算法中固有的场景统计信息以及其多遍的特点,设计了一个自适应的光子发射策略,使得发射的光子能更多的分布在对最终绘制有效的区域,提高了原算法的绘制效率.  相似文献   

3.
光子映射是近年发展起来的一种新的全局光照算法。本文依据光子映射对实体物体的渲染,将其扩展到对包含参与介质的场景的渲染,为此提出了一个两路的渲染算法。在第一路中,光子从光源发射,并使用光子追踪来构造体光子图;第二路从视点出发向场景中发射光线,使用光线追踪来进行渲染,其中,根据构造好的光子图,用光线步进进行
行递归的辐射估计,得出最终光强。  相似文献   

4.
徐庆  马亮  李明楚  王炜 《计算机工程》2005,31(24):186-187
提出并实现了一个基于蒙特卡罗整体光照计算的照片真实感图形绘制系统,该系统以蒙特卡罗路径跟踪技术为核心,实现了双向路径跟踪、辐照度缓存和光子图等著名的经典算法并以动态链接库的形式提供给用户,非常便于应用。系统高度模块化、具有良好的可扩展性。  相似文献   

5.
基于场景图的图像缓存绘制加速技术的方法   总被引:2,自引:0,他引:2  
张弛  李新 《计算机工程》2004,30(21):137-139
介绍了一种基于图像缓存技术的绘制加速方法,该方法利用漫游静态场景中视点移动的连续性加速绘制过程。该文介绍了图像缓存算法的基本思想与相关研究,在实现方式中,计算参考四边形与映射四边形相对于视点的角度差,作为衡量缓存纹理是否可用的误差控制标准,文章的最后提出了下一步有待于改进的研究点。  相似文献   

6.
为了对物体表面材质进行实时编辑,提出一种动态光照和任意视点条件下的实时全局光照算法.该算法预计算各面片的形状因子,并存储其中较大的形状因子值和相应的面片号,这些面片是光照贡献最大的面片.一次间接光照利用这些面片计算,并用亮度补偿策略增加计算精度,而二次及多次间接光照则用近似公式估算,整个光照计算过程在GPU中完成.实验结果表明,文中算法在视点改变、光照改变和材质改变情况下,对静态场景能获得逼真的实时全局光照绘制效果.  相似文献   

7.
基于光子图的光子映射算法能产生高质量的照片级图像。对于光照复杂的 场景,光子图需要存储大量光子以提高生成图像的质量,这不仅占用大量的内存空间,而且 光照估计的时间长。论文提出基于栅格的全局光子图重建的算法,即在光子包围盒被栅格化 后,其非空栅格中一定比例的光子被用来重建新的光子图,并保证重建前后栅格内光子能量 和守恒,这使得重建前后光子图的光照估计的效果相近。通过增加特定栅格中的重建光子数 目,能有效减少由几何偏差引起的光照估计误差,增强直接聚焦(焦散)和间接聚焦光照的 绘制效果;并使用简单方法检测生成图像中少量噪声,增加少量采样即可有效减少相应的噪 声。全局光子图重建算法的计算成本低,并保持生成图像的视觉独立性。  相似文献   

8.
针对随机光子追踪方法绘制光照条件困难的场景的效果差、收敛慢问题,提出一种基于视点重要度的自适应光子追踪方法.首先根据场景的视点重要度构造视点重要度图,并基于视点重要度和光子路径可见性来构造新的重要性函数;然后结合自适应马尔科夫链蒙特卡洛方法和分布交换技术采样该函数,以产生新的光子路径;最后设计了一种新的采样分布选择策略,先计算执行分布交换的概率,再根据概率决定生成新路径的采样分布.实验结果表明,该方法能高效地绘制困难光照场景,绘制结果具有较高的质量.  相似文献   

9.
基于遮挡区间映射的软阴影的研究与实现   总被引:1,自引:0,他引:1  
阴影贴图采样不足会导致严重的走样问题,全局光照算法虽能实现逼真的效果,但算法复杂、计算量大,只能用于离线渲染。针对这些缺陷,提出一种结合基于光线跟踪的离线渲染方法和遮挡区间映射技术的算法。其生成的软阴影更具真实感,克服了阴影映射算法产生的锯齿现象和全局光照的计算复杂问题。实验结果表明,该算法能以很高的帧率,实现大规模复杂场景下随光照变化产生动态软阴影的逼真效果。  相似文献   

10.
刘学慧  孙汉秋  吴恩华 《软件学报》2000,11(9):1207-1213
由于视点变化中画面可见性的变化以及在当前视点物体表面的扩张,仅由一幅带深度的源参考图像的三维重投影所得到的目标视点画面存在空洞问题.为此,人们采取多源参考图像的合成方法来解决此问题.如何从具有大量冗余信息的多幅源参考图像中快速提取当前目标视点所需信息,成为基于图像的虚拟环境建模和绘制的关键技术.该文给出一种从多幅源参考图像(目前仅两幅)合成当前视点画面的算法.算法结合正向映射及逆向映射技术完成对当前视点画面的合成,并且利用视觉约束-极线约束这一性质从其他源参考图像中寻找填补空洞的像素,从而避免了整幅参考图像的重投影过程及深度比较.同时,算法利用极线对上像素的排序特性和已有目标图像的信息加速填补空洞像素的搜索.算法在不增加原有图像映射算法复杂度的基础上,大大降低了原有多幅图像合成算法的计算量.  相似文献   

11.
We describe a global illumination method combining two well known techniques: photon mapping and irradiance caching. The photon mapping method has the advantage of being view independent but requires a costly additional rendering pass, called final gathering. As for irradiance caching, it is view‐dependent, irradiance is only computed and cached on surfaces of the scene as viewed by a single camera. To compute records covering the entire scene, the irradiance caching method has to be run for many cameras, which takes a long time and is a tedious task since the user has to place the needed cameras manually. Our method exploits the advantages of these two methods and avoids any intervention of the user. It computes a refined, view‐independent irradiance cache from a photon map. The global illumination solution is then rendered interactively using radiance cache splatting.  相似文献   

12.
Computing global illumination in complex scenes is even with todays computational power a demanding task. In this work we propose a novel irradiance caching scheme that combines the advantages of two state-of-the-art algorithms for high-quality global illumination rendering: lightcuts , an adaptive and hierarchical instant-radiosity based algorithm and the widely used (ir)radiance caching algorithm for sparse sampling and interpolation of (ir)radiance in object space. Our adaptive radiance caching algorithm is based on anisotropic cache splatting, which adapts the cache footprints not only to the magnitude of the illumination gradient computed with light-cuts but also to its orientation allowing larger interpolation errors along the direction of coherent illumination while reducing the error along the illumination gradient. Since lightcuts computes the direct and indirect lighting seamlessly, we use a two-layer radiance cache, to store and control the interpolation of direct and indirect lighting individually with different error criteria. In multiple iterations our method detects cache interpolation errors above the visibility threshold of a pixel and reduces the anisotropic cache footprints accordingly. We achieve significantly better image quality while also speeding up the computation costs by one to two orders of magnitude with respect to the well-known photon mapping with (ir)radiance caching procedure.  相似文献   

13.
This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination. This structure is intended for efficient storage and manipulation of illumination. It is based on a 3D grid that stores a fixed set of irradiance vectors. During preprocessing, this representation can be built using almost any existing global illumination software. During rendering, the indirect illumination within a voxel is interpolated from its associated irradiance vectors, and is used as additional local light sources. Compared with other techniques, the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene. We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.  相似文献   

14.
We present a novel framework for efficiently computing the indirect illumination in diffuse and moderately glossy scenes using density estimation techniques. Many existing global illumination approaches either quickly compute an overly approximate solution or perform an orders of magnitude slower computation to obtain high-quality results for the indirect illumination. The proposed method improves photon density estimation and leads to significantly better visual quality in particular for complex geometry, while only slightly increasing the computation time. We perform direct splatting of photon rays, which allows us to use simpler search data structures. Since our density estimation is carried out in ray space rather than on surfaces, as in the commonly used photon mapping algorithm, the results are more robust against geometrically incurred sources of bias. This holds also in combination with final gathering where photon mapping often overestimates the illumination near concave geometric features. In addition, we show that our photon splatting technique can be extended to handle moderately glossy surfaces and can be combined with traditional irradiance caching for sparse sampling and filtering in image space.  相似文献   

15.
Photon mapping is widely used for global illumination rendering because of its high computational efficiency. But its efficiency is still limited, mainly by the intensive sampling required in final gathering, a process that is critical for removing low frequency artifacts of density estimation. In this paper, we propose a method to predict the final gathering estimation with direct density estimation, thereby achieving high quality global illumination by photon mapping with high efficiency. We first sample the irradiance of a subset of shading points by both final gathering and direct radiance estimation. Then we use the samples as a training set to predict the final gathered irradiance of other shading points through regression. Consequently, we are able to achieve about three times overall speedup compared with straightforward final gathering in global illumination computation with the same rendering quality.  相似文献   

16.
Photon mapping is an efficient method for producing high-quality, photorealistic images with full global illumination. In this paper we present a more accurate and efficient approach to final gathering using the photon map based upon hierarchical evaluation of the photons over each surface. We use the footprint of each gather ray to calculate the irradiance estimate area rather than deriving it from the local photon density. We then describe an efficient method for computing the irradiance from the photon map given an arbitrary estimate area. Finally, we demonstrate how the technique may be used to reduce variance and increase efficiency when sampling diffuse and glossy-specular BRDFs.  相似文献   

17.
Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.  相似文献   

18.
Image space photon mapping has the advantage of simple implementation on GPU without pre‐computation of complex acceleration structures. However, existing approaches use only a single image for tracing caustic photons, so they are limited to computing only a part of the global illumination effects for very simple scenes. In this paper we fully extend the image space approach by using multiple environment maps for photon mapping computation to achieve interactive global illumination of dynamic complex scenes. The two key problems due to the introduction of multiple images are 1) selecting the images to ensure adequate scene coverage; and 2) reliably computing ray‐geometry intersections with multiple images. We present effective solutions to these problems and show that, with multiple environment maps, the image‐space photon mapping approach can achieve interactive global illumination of dynamic complex scenes. The advantages of the method are demonstrated by comparison with other existing interactive global illumination methods.  相似文献   

19.
Radiance caching for efficient global illumination computation   总被引:1,自引:0,他引:1  
In this paper, we present a ray tracing-based method for accelerated global illumination computation in scenes with low-frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In particular, we extend the irradiance caching scheme proposed by Ward et al. (1988) to cache and interpolate directional incoming radiance instead of irradiance. The incoming radiance at a point is represented by a vector of coefficients with respect to a hemispherical or spherical basis. The surfaces suitable for interpolation are selected automatically according to the roughness of their BRDF. We also propose a novel method for computing translational radiance gradient at a point.  相似文献   

20.
The ability to interactively render dynamic scenes with global illumination is one of the main challenges in computer graphics. The improvement in performance of interactive ray tracing brought about by significant advances in hardware and careful exploitation of coherence has rendered the potential of interactive global illumination a reality. However, the simulation of complex light transport phenomena, such as diffuse interreflections, is still quite costly to compute in real time. In this paper we present a caching scheme, termed Instant Caching, based on a combination of irradiance caching and instant radiosity. By reutilising calculations from neighbouring computations this results in a speedup over previous instant radiosity‐based approaches. Additionally, temporal coherence is exploited by identifying which computations have been invalidated due to geometric transformations and updating only those paths. The exploitation of spatial and temporal coherence allows us to achieve superior frame rates for interactive global illumination within dynamic scenes, without any precomputation or quality loss when compared to previous methods; handling of lighting and material changes are also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号