首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
融合Pareto邻域交叉算子的多目标分布估计算法   总被引:1,自引:0,他引:1       下载免费PDF全文
将分布估计算法用于多目标优化问题,提出一种融合Pareto邻域交叉算子的多目标分布估计算法(MEDAP)。与一般分布估计算法只通过采样方法产生新种群不同,MEDAP算法利用采样和交叉相结合的方法产生新种群,并通过模拟退火技术在线调节尺度因子,以此来控制采样和交叉的贡献量,根据NSGA-II的选择策略选出下一代进化种群。数值实验分为两组,一组选取8个常用测试函数并与NSGA-II、SPEA2、MOPSO三个多目标算法进行比较,数值实验结果表明了MEDAP算法的有效性。另一组与不加Pareto邻域交叉算子的多目标分布估计算法进行比较,数值实验结果验证了Pareto邻域交叉算子的加入提高了算法的性能。  相似文献   

2.
基于混沌的多目标粒子群优化算法   总被引:1,自引:0,他引:1  
针对多目标优化问题,提出了一种改进的粒子群算法.该算法为了寻找新解,引入了混沌搜索技术,同时采用了一种新的方法--拥挤距离法定义解的适应度.并采取了精英保留策略,在提高非劣解集多样性的同时,使解集更加趋近于Pareto集.最后,把算法应用到4个典型的多目标测试函数.数值结果表明,该算法能够有效的收敛到Pareto非劣最优目标域,并沿着Pareto非劣目标域有很好的分散性.  相似文献   

3.
基于粒子群的多目标优化算法   总被引:21,自引:5,他引:21  
论文提出了一种新的基于粒子群的多目标优化算法。用搜索过程中所发现非劣解的一部分构成精英集,将其作为粒子群的历史最佳,引导粒子群的搜索,并通过小生境技术和部分变异的方法来提高非劣解集的多样性和分散性。对三个典型多目标测试函数所作实验的结果验证了该方法的有效性和快速性,结果还表明:该方法所得非劣解集在分散性、错误率和逼近程度等量化指标上优于FFGA、SPEA、PAES、NSGA等方法,是一种非常有潜力的多目标优化方法。  相似文献   

4.
基于Pareto熵的多目标粒子群优化算法   总被引:4,自引:0,他引:4  
胡旺  Gary G. YEN  张鑫 《软件学报》2014,25(5):1025-1050
粒子群优化算法因形式简洁、收敛快速和参数调节机制灵活等优点,同时一次运行可得到多个解,且能逼近非凸或不连续的Pareto最优前端,因而被认为是求解多目标优化问题最具潜力的方法之一.但当粒子群优化算法从单目标问题扩展到多目标问题时,Pareto最优解集的存储与维护、全局和个体最优解的选择以及开发与开采的平衡等问题亦随之出现.通过目标空间变换方法,采用Pareto前端在被称为平行格坐标系统的新目标空间中的分布熵及差熵评估种群的多样性及进化状态,并以此为反馈信息来设计进化策略,使得算法能够兼顾近似Pareto前端的收敛性和多样性.同时,引入格占优和格距离密度的概念来评估Pareto最优解的个体环境适应度,以此建立外部档案更新方法和全局最优解选择机制,最终形成了基于Pareto熵的多目标粒子群优化算法.实验结果表明:在IGD性能指标上,与另外8种对等算法相比,该算法在由ZDT和DTLZ系列组成的12个多目标测试问题集中表现出了显著的性能优势.  相似文献   

5.
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization algorithm for Multi-Strategy,MS-MOPSO)。采用非支配排序和拥挤距离排序相结合策略,重新划分外部种群和进化种群;采用小生境选择策略,在外部种群中选择最佳粒子作为领导粒子,用于领导进化种群中粒子的进化;在进化种群中利用多尺度高斯变异策略,平衡算法的全局搜索和局部精确搜索;采用邻域认知个体极值更新策略,不断更新个体极值。将该算法应用到典型的多目标测试函数,并与其他多目标优化算法进行对比分析,测试结果表明该算法中四个策略的有效性和互补性,同时验证了该算法不但具有较好的收敛性和收敛速度,而且该算法最优解的分布具有良好的均匀性和多样性。  相似文献   

6.
针对基于权重法的多目标算法无法求解约束多目标问题的缺陷,将中心粒子群算法与Pareto解集搜索算法相结合,提出一种Pareto多目标中心粒子群算法。将此方法用来优化气门弹簧的模型,实验结果表明,该优化方法能够快速准确地收敛于Pareto解集,并且使其对应的目标域均匀地分布于Pareto最优目标域。  相似文献   

7.
基于遗传算子的改进粒子群优化算法   总被引:1,自引:0,他引:1  
为了克服PSO算法容易陷入局部最优的缺陷,提出一种基于遗传算子的改进PSO算法。该算法借鉴常规的遗传算法中的选择交叉操作,在优化搜索过程中更新粒子的位置时,进行交叉操作,可以扩大全局搜索范围,避免局部最优,提高粒子的多样性。对改进后的算法使用几个典型的测试函数进行了仿真实验,实验结果表明,相比于标准PSO该算法的全局搜索能力和收敛精度都有较大提高,有效地改善了优化性能。  相似文献   

8.
基于交叉和变异的多目标粒子群算法   总被引:2,自引:0,他引:2  
为了保证粒子群算法求得的非劣解尽可能接近真实的Pareto前沿并保持多样性分布. 提出一种基于交叉和变异的多目标粒子群算法(CMMOPSO). 在CMMOPSO算法中, 首先, 识别Pareto前沿的稀疏部分包含的粒子, 并对这些粒子进行交叉操作以增加多样性分布; 其次, 对于远离Pareto前沿的粒子进行变异操作, 以提升粒子向真实的Pareto前沿飞行的概率. 在基准函数的测试中, 结果显示CMMOPSO算法比其它算法有更好的运行效果. 因此, CMMOPSO算法可以作为求解多目标问题的一种有效算法.  相似文献   

9.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。  相似文献   

10.
解多目标优化问题的新粒子群优化算法   总被引:3,自引:0,他引:3  
通过定义的粒子序值方差和U-度量方差,把对任意多个目标函数的优化问题转化成为两个目标函数的优化问题。继而把Pareto最优与粒子群优化(PSO)算法相结合,对转化后的优化问题提出了一种新的多目标粒子群优化算法,并证明了其收敛性。新方法用较少计算量便可以求出一组在最优解集合中分布均匀且数量充足的最优解。计算机仿真表明该算法对不同的试验函数均可用较少计算量求出在最优解集合中分布均匀且数量充足的最优解。  相似文献   

11.
多目标微粒群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
通过设计一种Pareto解集过滤器,并在此基础上给出多目标优化条件下的微粒群算法群体停滞判断准则,基于该准则提出了一种多目标微粒群优化算法。算法利用Pareto解集过滤器提高了候选解的多样性,并使用图形法将所提算法与经典的多目标优化进化算法在一组标准测试函数上进行了比较,结果表明算法具有更好的搜索效率。  相似文献   

12.
基于决策者偏好区域的多目标粒子群算法研究*   总被引:2,自引:3,他引:2  
多目标优化问题中,决策者往往只对目标空间的某一区域感兴趣,因此需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法却找出全部的Pareto前沿,决策效率不高。针对该问题,给出了基于决策者偏好区域的多目标粒子群优化算法。它只求出与决策者偏好区域相关的部分Pareto最优集,从而减少了进化代数,加快收敛速度,有利于决策者进行更有效的决策。算法把解与偏好区域的距离作为影响引导者选择和剪枝策略的一个因素,运用格栅方法实现解在Pareto边界分布的均匀性。仿真结果表明该算法是有效的。  相似文献   

13.
戴永彬 《计算机应用研究》2021,38(12):3673-3677
针对多目标优化求解的问题,提出一种基于类圆映射的多目标粒子群优化算法(qMOPSO).首先,利用类圆映射技术将高维空间的解集映射到二维坐标平面,监控粒子种群的进化状态.其次,为了兼顾种群的收敛性和分布性,采用类圆占优和类圆扇块距离的概念设计了新的档案集管理策略.另外,根据种群分布熵变化情况,选择全局最优粒子,指导种群进化方向.最后,基于换维思想和淘汰机制,采用一种新的综合管理策略,提高种群寻优性能.所提算法采用三类测试函数和五种对比算法进行了对比实验.仿真实验证明,该方法是正确、有效的.  相似文献   

14.
为了优化资源的部署调度,需要考虑处理费用、传输费用,并提高云计算的性能.对云计算环境下特点进行了研究,把云计算环境下的数据部署和任务调度问题映射为处理交互图,对处理交互图进行分析、提出了多目标优化模型,并通过粒子群算法对多目标模型进行优化.仿真结果表明,该多目标优化模型和算法不但能优化处理时间、传输时间,也能优化处理费用和传输费用.  相似文献   

15.
研究了邻域拓扑结构对粒子群算法性能的影响。设计了两种动态邻域生成策略,并基于一组具有代表性的测试函数,对两种典型的算法模型——标准的粒子群算法(CPSO)和充分联系的粒子群算法(FIPS)进行实验。实验结果表明,不同的邻域拓扑结构和不同的算法模型都能够影响粒子群算法的性能。  相似文献   

16.
基于交叉变异的混合粒子群优化算法   总被引:4,自引:2,他引:4       下载免费PDF全文
粒子群优化算法是一种基于群体智能理论的全局优化算法,通过群体中粒子间的合作与竞争实现对问题空间的高效搜索。针对算法后期收敛速度较慢、易陷入局部最优的缺点,提出了一种混合粒子群算法。该算法通过改变种群初始化方法,引入交叉和变异机制等措施改善基本粒子群算法的性能。数值试验结果表明,改进型粒子群算法在提高全局寻优能力和加快收敛速度等方面均有良好的表现。  相似文献   

17.
为了解决多目标优化求解的问题,提出一种基于旋转基技术的多目标粒子群优化算法(rtMOPSO)。改进了旋转基可视化技术,并将Pareto前沿映射到改进的旋转基扇形平面上,采用差熵指标监测种群进化状态。为平衡归档集的收敛性和多样性,提出了角度支配和角度支配力度两种新的概念,并设计归档集新的排序方法。在融合了旋转基角度和距离的概念的基础上,提出了一种改进的全局引导粒子的选择策略。改进算法采用两个类别的测试函数,与五种多目标优化算法进行了对比实验。实验结果表明,改进算法在收敛性和多样性方面优势明显。  相似文献   

18.
在分析多目标优化问题的基础上,提出一种随机多目标微粒群算法,该算法采用在已经获得的Pareto解集中随机选取的两个Pareto解作为微粒更新公式中的pbest和gbest微粒,从而使微粒群的多样性增加,获得均匀分布的Pareto前沿。之后利用有限齐次马尔科夫理论给出了SMOPSO算法的收敛性进行了分析,证明SMOPSO算法以概率1收敛于极小元。最后通过对两个常用多目标函数的仿真实验,验证了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号