首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
七氟丙烷气体灭火系统越来越多地被应用在电子机房等场合,但许多工程设计人员对其物性还是比较陌生,在平常的设计施工中我们的经验告诉我们,只要我们从设计施工中系统设置的先遣条件、系统的组件设计、系统有效性和安全性等三个方面去加以考虑,就能使七氟丙烷气体灭火系统的灭火效果达到预想的目的,这一点对于广大工程技术人员的设计施工都有比较实际的意义。  相似文献   

2.
通过对七氟丙烷灭火剂和系统的基本分析以及与卤代烷1301的对比,说明了在目前气体消防系统中七氟丙烷是理想的替代系统;针对七氟丙烷系统存在的保护空间小和灭火过程中产生热分解物氟化氢等的特点,阐述了技术上的提高及设计中对安全上的考虑。  相似文献   

3.
七氟丙烷灭火剂及应用   总被引:2,自引:0,他引:2  
介绍了七氟丙烷气体灭火剂的基本性质及特点 ,阐述了七氟丙烷气体灭火剂的灭火原理 ,讨论了七氟丙烷气体灭火剂的环境效益、安全可靠性、经济适用性 ,并对其适用条件进行了说明  相似文献   

4.
主要介绍了七氟丙烷的基本性质、制备方法及其应用研究进展。总结了七氟丙烷的制备方法,并对其做出了评价。七氟丙烷主要用于灭火剂系统,也可作为储存物品的惰性气体介质、消毒剂和推进剂等。  相似文献   

5.
基于流体力学基本理论,分析七氟丙烷灭火剂灭火过程中灭火剂施放、流动和扩散行为特点,并基于流体力学基本理论,结合k-ε双方程湍流模型,建立了描述七氟丙烷灭火剂施放、流动和扩散过程的数学模型,并给出了相应的数值求解方法。利用建立的数学模型对试验舱体内七氟丙烷灭火剂的施放、流动和扩散过程进行了模拟分析,得到了详细的流场和浓度分布情况。模拟结果表明,在喷嘴附近七氟丙烷灭火剂流动速度较快,且七氟丙烷浓度较高;随着施放时间的延长,七氟丙烷灭火剂在舱内的流动和扩散速度和浓度逐渐降低。当七氟丙烷用量为0.85kg时,舱体内七氟丙烷浓度约为4%,达不到灭火浓度要求(5.8%);当七氟丙烷用量增加到1.75kg时,舱体内七氟丙烷浓度约为7%,可达到灭火浓度要求。  相似文献   

6.
邹明才 《化工设计通讯》2022,(2):103-105,131
为提升火灾扑救效果,减少人们财产损失,一直以来,人们正努力研制应对火灾措施,希望通过该过程,提升人们安全意识与灭火效率.新型气体灭火剂七氟丙烷拥有很强的灭火性能,而且生产简单,对环境的污染较小.对七氟丙烷灭火剂的性能和应用展开研究,分析这种灭火剂相对于其他传统灭火剂的优势,并讨论其应用,帮助技术研究人员开发出更为有效的...  相似文献   

7.
开发了以2-H七氟丙烷为原料气相溴化合成2-溴七氟丙烷的工艺路线,获得了优化反应条件。结果表明,在2-H七氟丙烷与溴的摩尔比为2.5:1,反应温度为500℃,2-H七氟丙烷停留时间为24 s的优化条件下,溴转化率可达89.4%,2-溴七氟丙烷的选择性可达99.9%。在反应器中通入一定量的氯气,可显著提高2-H七氟丙烷的转化率。  相似文献   

8.
叙述了2-溴七氟丙烷的性质及其制备方法,1种是六氟丙烯先和溴反应制得1,2-二溴六氟丙烷,1,2-二溴六氟丙烷与KF反应得到2-溴七氟丙烷;另1种是六氟丙烯先与HF反应制备1,1,1,2,3,3,3-七氟丙烷(HFC-227ea),HFC-227ea与溴反应得到2-溴七氟丙烷。目前实现工业化的方法实质上都是六氟丙烯法。介绍了2-溴七氟丙烷在医药农药中间体领域的应用情况。认为今后研究重点是将2-碘七氟丙烷参与的反应尽可能地用2-溴七氟丙烷代替,以合成更多的医药农药关键中间体;2-溴七氟丙烷制备的医药农药关键中间体主要是4-七氟异丙基苯胺衍生物,而其中2-甲基-4-七氟异丙基苯胺是合成氟虫酰胺的关键中间体,应重点关注。  相似文献   

9.
概述了七氟丙烷的性质、合成工艺及应用。  相似文献   

10.
气固相催化制备七氟丙烷的研究   总被引:2,自引:0,他引:2  
以六氟丙烯为原料,经连续气固相氢氟化反应制备了七氟丙烷,并对工艺参数进行了系统的研究。在较佳的催化中,当六氟丙烯通过每kg催化剂的流量为0.33~0.35kg/h、酸烯比为1.3~1.5、反应温度为210℃时,粗品气中的七氟丙烷含量≥98.5%。  相似文献   

11.
In this paper, large eddy simulation coupled with a low Mach number compressible thermal-drive flow model had been utilized to investigate the development of large-scale engine room fire, and the characteristics of engine room fire were analyzed through based upon the distinctive fire extinction behavior. Results indicated that extinction modes of engine room fire could be divided into oxygen control type and fuel control type. And the flame morphology could be divided into four stages: conical flame, pulsating flame, column flame, and ghosting flame. The appearance of the ghosting flame was affected by the extinction mode, but there were obvious differences in the causes of ghosting flame between the two modes. The cause of ghosting flame was related to the distribution of temperature field under the fuel control type, while the occurrence of ghosting flame in oxygen control type was mainly affected by oxygen concentration. Deflagration should be avoided when extinguishing fire by sealing the cabin.  相似文献   

12.
从火灾报警控制器的设计选配、功能特点、消防联动控制等方面,介绍火灾自动报警系统及其在安钢御景园的应用。  相似文献   

13.
The extinguishing performance of three dry chemical powders (DCPs) was investigated through a lab-scale suppression system for liquefied petroleum gas (LPG) fire. The magnesium hydroxide (Mg(OH)2 ), sodium bicarbonate (NaHCO3 ), and commercial ABC − MAP powders are used to prepare two groups of samples: raw samples and milled samples. The effect of milling action on the properties of DCPs, such as the bulk density, microstructure, particle size, thermal decomposition, and the extinguishing performance, is analyzed. The density test revealed that the bulk density increased after milling, and the Mg(OH)2 had a lower density than the other powders. The microstructure analysis showed that the milled powders had a smaller particle size and more regular shapes than raw powders. The thermal analysis demonstrated that the powder decomposition process was somewhat similar with a slight difference in initial decomposition temperature and degradation rate. The fire tests proved that the extinguishing efficacy greatly improved after the samples were milled. Moreover, the experiments indicated that the milled Mg(OH)2 was superior in fire extinguishing to the other samples with shorter extinction time and less agent quantity consumed. Based on the results, it can be inferred that the milling action has a significant influence in enhancing the extinguishing mechanisms' efficiency of DCPs.  相似文献   

14.
姜大伟 《广州化工》2013,41(8):240-242
通过分析室外大型油浸变压器的火灾危险性和相关防火规范的要求,介绍日前常用的保护各类油浸变压器的灭火系统,描述了水喷雾灭火系统的灭火原理及其系统组成,并以某化工项目变电所室外油浸变压器的水喷雾灭火系统设计为例,介绍该系统的设计流程及应注意的问题。  相似文献   

15.
介绍了稳高压消防给水系统与临时高压消防给水系统的定义,进行了两类消防给水系统的对比,对火电厂稳高压消防给水系统水泵接合器及消防水箱的设置提出建议。  相似文献   

16.
张国新 《中国氯碱》2010,(3):23-24,32
阐述了消防稳压装置在消防系统中的应用情况。介绍了装置的工作原理、特点和日常注意事项。  相似文献   

17.
涂装车间的安全是涂装车间生产、质量的基本前提条件,涂装车间的安全消防设施又是涂装车间安全的基本保障。结合涂装车间的实际案例,对涂装车间的消防等级、消防区域,以及消防设施的配备进行了介绍。  相似文献   

18.
含凝胶消光PVC树脂的消光性能研究   总被引:3,自引:0,他引:3  
介绍了消光聚氯乙烯树脂的性能,研究了聚合度、凝胶含量、膨润度、交联剂等对消光性能的影响,以及增塑剂用量、加工温度、混炼时间等对制品消光性能的影响,并探讨了消光原理。  相似文献   

19.
This study investigates how high‐pressure water–mist system discharge methodologies influence the fire extinction performance for pan pool fires and the corresponding mechanisms of restraining fire. The fire source is a pool‐fire burner. Fine water spray is injected using a portable device. The additive in the water–mist is neither toxic nor corrosive. All the tests are regarded as fuel controlled. The fire test parameters are fuel type, nozzle discharge angle, and additive solution volume. The fuels used are heptane, gasoline, and diesel. Nozzle discharge angles are 30, 45, and 60° with respect to the ground. Additive solution volumes are 0% (pure water), 3, 6, and 10%. Test results indicate that the nozzle discharge angle and additive solution volume in a water–mist fire extinction system play a significant role. Fire extinguishing efficiency is influenced by mist effects and the additive. Furthermore, the water–mist system can reduce radiation and can provide good protection for operators using portable fire extinguishing equipment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
针对煤化工工艺装置中布置在管廊下液化烃泵房的消防设计,介绍了现行相关规范的要求,对水喷雾灭火系统的组成、控制方式及设计中其它注意事项进行了说明和分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号