首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a robust attitude and position control of a novel modified quadrotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against actuator faults than conventional quad-rotor UAV has been developed. A robust backstepping controller with adaptive interval type-2 fuzzy logic is proposed to control the attitude and position of the modified quadrotor under actuator faults. Besides globally stabilizing the system amid other disturbances, the insensitivity to the model errors and parametric uncertainties are the asset of the backstepping approach. The adaptive interval type-2 fuzzy logic as fault observer can effectively estimate the lumped faults without the knowledge of their bounds for the modified quadrotor UAV. Additionally, the type-2 fuzzy systems are utilized to approximate the local nonlinearities of each subsystem under actuator faults, next and in order to achieve the expected tracking performance, we used Lyapunov theory stability and convergence analysis to online adjust adaptive laws. As a result, the uniformly ultimate stability of the modified quadrotor system is proved. Finally, the performances of the proposed control method are evaluated by simulation and the results demonstrate the effectiveness of the proposed control strategy for the modified quadrotor in vertical flights in presence of actuator faults.  相似文献   

2.
非线性系统的集成故障诊断和容错控制   总被引:3,自引:0,他引:3  
基于解析模型而建立的状态观测法是一种得到了广泛应用的故障诊断和容错控制方法,而该方法在非线性不确定系统中的实际应用却由于未知输入扰动的影响受到一定的局限.针对机电系统中常见的严格反馈型不确定非线性系统,并考虑含有未知输入扰动,提出一种集成故障诊断与容错控制的设计方案,使系统在对不确定模型具有鲁棒性的同时,对执行器故障具有较强的跟踪性.该方案给出一种基于滑模变结构的容错控制器设计方法,并利用滑模变结构中的等值控制方法设计状态观测器,利用自适应方法实现对不同形式故障的重构.将所提方法以电液伺服系统为例进行仿真分析.仿真结果表明,系统对不确定模型具有鲁棒性,对突变、缓变和间歇变化等3种常见形式的故障以及带噪声的缓变故障均可进行较好的重构.  相似文献   

3.
Owing to the adoption of aperiodic sampling pattern, the event-triggering control mode has been widely investigated in networked systems to save communication and reduce computation. Recently, there has been some preliminary findings to explore applications of this novel mode and to implement it in neural-network-based nonlinear systems by including an event generator. This motivates our investigation. For the first time, this paper designs triggering rules for neural-network-based nonzero-sum differential games characterized by nonlinear dynamics and quadratic cost functions. The main intention of the event-triggering strategy is to reduce communication between controllers and neural networks, thereby mitigating computational loads of controllers. An adaptive critic algorithm is subsequently applied to learn the required Nash equilibrium on line and meantime an alarm sampling period is proposed to ameliorate the learning accuracy. Furthermore, three simulation cases validate the approximate-optimal control performance and appraise virtues of the proposed event-triggering mode.  相似文献   

4.
This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations.  相似文献   

5.
In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach.  相似文献   

6.
In this paper, an anti-windup incremental nonlinear dynamic inversion (INDI) fault-tolerant scheme is proposed for flying wing aircraft with actuator faults, actuator saturation and uncertainties of aerodynamic parameters. An optimal anti-windup compensator based on nonlinear partial differential inequalities is used to compensate the actuator saturation. INDI is used to control the fault system and compensate the uncertainties of the flight dynamics. Control allocation strategy is designed in consideration of the control scheme and configuration of the control surfaces. The proposed control method can guarantee the bounded tracking of the reference signals. Simulation results are given to show the effectiveness of the proposed method.  相似文献   

7.
This paper presents a delay-independent nonlinear disturbance observer (NDO) design methodology for adaptive tracking of uncertain pure-feedback nonlinear systems in the presence of unknown time delays and unmatched external disturbances. Compared with all existing NDO-based control results for uncertain lower-triangular nonlinear systems where unknown time delays have been not considered, the main contribution of this paper is to develop a delay-independent design strategy to construct an NDO-based adaptive tracking scheme in the presence of unknown time-delayed nonlinearities and non-affine nonlinearities unmatched in the control input. The proposed delay-independent scheme is constructed by employing the appropriate Lyapunov-Krasovskii functionals and the same function approximators for the NDO and the controller. It is shown that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

8.
针对空间机器人在太空作业时执行器发生部分失效故障的问题,设计了一种基于非奇异终端滑模的分散容错控制方法。根据线动量守恒定律与拉格朗日法建立了系统的动力学方程,然后基于载体和关节的局部信息将系统进行分散,从而得到子系统的动力学方程;将子系统动力学方程中表示执行器故障程度的有效因子进行变量分离,再利用自适应分散神经网络对分离后的变量进行实时估计,根据估计结果在线设计控制律以消除执行器故障对系统稳定性的影响,保证良好的轨迹跟踪性能。通过Lyapunov函数法证明了该控制方案能保证整个闭环系统的渐进稳定性。仿真结果验证了控制方法的有效性。  相似文献   

9.
This paper studies an adaptive control strategy for a class of 5 DOF upper-limb exoskeleton robot with a special safety consideration. The safety requirement plays a critical role in the clinical treatment when assisting patients with shoulder, elbow and wrist joint movements. With the objective of assuring the tracking performance of the pre-specified operations, the proposed adaptive controller is firstly designed to be robust to the model uncertainties. To further improve the safety and fault-tolerance in the presence of unknown large parameter variances or even actuator faults, the adaptive controller is on-line updated according to the information provided by an adaptive observer without additional sensors. An output tracking performance is well achieved with a tunable error bound. The experimental example also verifies the effectiveness of the proposed control scheme.  相似文献   

10.
In this paper, the problem of decentralized adaptive neural backstepping control is investigated for high-order stochastic nonlinear systems with unknown interconnected nonlinearity and prescribed performance under arbitrary switchings. For the control of high-order nonlinear interconnected systems, it is assumed that unknown system dynamics and arbitrary switching signals are unknown. First, by utilizing the prescribed performance control (PPC), the prescribed tracking control performance can be ensured, while the requirement for the initial error is removed. Second, at each recursive step, only one adaptive parameter is constructed to overcome the over-parameterization, and RBF neural networks are employed to tackle the difficulties caused by completely unknown system dynamics. At last, based on the common Lyapunov stability method, the decentralized adaptive neural control method is proposed, which decreases the number of learning parameters. It is shown that the designed common controller can ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the prescribed tracking control performance is guaranteed under arbitrary switchings. The simulation results are presented to further illustrate the effectiveness of the proposed control scheme.  相似文献   

11.
12.
变转速电机-泵直驱电液系统的发展与伺服技术的提升使得泵控系统在保留高能效特性的同时,具有更高的硬件集成度和更快的响应速度;但是在低转速泵控工况下,此类系统依旧存在泵的流量非线性、流量偏差大等控制难点,使得变转速泵控系统难以完成高精度的执行器运动轨迹跟踪。为实现泵控液压缸系统的精密运动控制,提出了一种新颖的非线性流映射方案,以此得到精确的泵输出流量;同时,利用非线性自适应鲁棒反演控制策略(Adaptive Robust Controller Backstepping,ARCB)实现液压系统在高阶动力学、参数不确定性下的精确控制。试验表明,提出的控制策略可有效解决变转速泵的流量偏差问题,实现理想的控制性能和轨迹跟踪精度。  相似文献   

13.
The problem of finite-time decentralized neural adaptive constrained control is studied for large-scale nonlinear time-delay systems in the non-affine form. The main features of the considered system are that 1) unknown unmatched time-delay interactions are considered, 2) the couplings among the nested subsystems are involved in uncertain nonlinear systems, 3) based on finite-time stability approach, asymmetric saturation actuators and output constraints are studied in large-scale systems. First, the smooth asymmetric saturation nonlinearity and barrier Lyapunov functions are used to achieve the input and output constraints. Second, the appropriately designed Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. Note that, due to unknown time-delay interactions and the couplings among subsystems, the controller design is more meaningful and challenging. At last, based on finite-time stability theory and Lyapunov stability theory, a decentralized adaptive controller is proposed, which decreases the number of learning parameters. It is shown that the designed controller can ensure that all closed-loop signals are bounded and the tracking error converges to a small neighborhood of the origin. The simulation studies are presented to show the effectiveness of the proposed method.  相似文献   

14.
This paper addresses the problems of fault estimation (FE) and fault tolerant control (FTC) for fuzzy systems with local nonlinear models, external disturbances, sensor and actuator faults, simultaneously. Disturbance observer (DO) and FE observer are designed, simultaneously. Compared with the existing results, the proposed observer is with a wider application range. Using the estimation information, a novel fuzzy dynamic output feedback fault tolerant controller (DOFFTC) is designed. The controller can be used for the fuzzy systems with unmeasurable local nonlinear models, mismatched input disturbances, and measurement output affecting by sensor faults and disturbances. At last, the simulation shows the effectiveness of the proposed methods.  相似文献   

15.
This paper focuses on the problem of fault-tolerant controller (FTC) design for uncertain networked control systems (NCSs) with random delays and actuator faults. A new fault model is proposed to represent more class of actuator faults. More precisely, the NCSs with random delays and the possible actuator faults are modeled as a Markovian jump system (MJS) with incomplete transition probabilities (TPs) and then LMI-based sufficient conditions are derived to ensure the stochastic stability of the closed-loop system. The sufficient conditions are constructed to synthesize the mode-dependent static-output feedback (SOF) control laws. Feasibility and reliability of the proposed FTC against actuator faults are indicated through simulation results.  相似文献   

16.
In this paper an adaptive neural network (NN)-based nonlinear controller is proposed for trajectory tracking of uncertain nonlinear systems. The adopted control algorithm combines a continuous second-order sliding mode control (CSOSMC), the radial basis function neural network (RBFNN) and the adaptive control methodology. First, a second-order sliding mode control scheme (SOSMC), which is published recently in literature for linear uncertain systems, is extended for nonlinear uncertain systems. Second, an adaptive radial basis function neural network estimator-based continuous second order sliding mode control algorithm (CSOSMC-ANNE) is adopted. In CSOSMC-ANNE control methodology, a radial basis function neural network with adaptive parameters is exploited to approximate the unknown system parameters and improve performance against perturbations. Also, the discontinuous switching control of SOSMC is supplanted with a smooth continuous control action to completely eliminate the chattering phenomenon. The convergence and global stability of the closed-loop system are proved using Lyapunov stability method. Numerical computer simulations, with dynamical model of the nonlinear inverted pendulum system, are presented to demonstrate the effectiveness and advantages of the presented control scheme.  相似文献   

17.
为提高电液负载模拟器的跟踪精度,针对其存在的大量非线性特性和模型不确定性等问题,建立了系统非线性数学模型,基于传统的误差符号积分鲁棒控制方法,融合自适应控制的思想,设计了一种自适应误差符号积分鲁棒控制方法。该方法无需获知模型不确定性的确切界,其积分鲁棒增益的取值可在线调节,更好地克服了模型不确定性对系统的影响,在舵机运动干扰作用下实现了系统的渐近稳定性能。仿真对比结果验证了该控制方法的优良性能。  相似文献   

18.
Model reference adaptive control for a piezo-positioning system   总被引:1,自引:0,他引:1  
Piezoelectric (PZT) actuators having the characteristic of infinitely small displacement resolution are popularly applied as actuators in precision positioning systems. Due to its nonlinear hysteresis effect, the tracking control accuracy of the precision positioning system is difficultly achieved. Hence, it is desirable to take hysteresis effect into consideration for improving the trajectory tracking performance. In this paper, a model reference adaptive control scheme based on hyperstability theory is developed for a moving stage system driven by a PZT actuator. It is worth emphasizing that the controller can be constructed without a nonlinear hysteresis dynamic equation to compensate the hysteresis effect. According to simulation results, the tracking error was only nanometer order. Through experimental examinations, the tracking performance was obtained as precision as ten nanometers order which is the resolution limitation of the measurement system. The effectiveness of the proposed adaptive control scheme was validated.  相似文献   

19.
The design of decentralized controllers for a class of uncertain interconnected nonlinear systems is considered. The uncertainty considered here is time-varying and appears at each subsystem and interconnections. Two control techniques are explored. The first one, namely, the feedback linearization control, involves a known and autonomous nonlinear system. The second one, namely, the robust control, is especially suitable if any uncertainty and/or time-varying factors are involved in the nonlinear dynamics. These two controllers are combined to stabilize a class of large-scale nonlinear uncertain systems. Two decentralized robust controllers, nonadaptive and adaptive, are proposed and those results are proved.  相似文献   

20.
This paper presents a new discrete-time adaptive second-order sliding mode control with time delay estimation (TDE) for a class of uncertain nonlinear time-varying strict-feedback systems. The existing researches on time delay control (TDC) are conventionally established based on a stability criterion that is subject to the infinitesimal time delay assumption. Recently, this criterion was rejected and a new criterion was proposed for the development of a controller for systems with fully known dynamics. In this study, this approach is extended to uncertain systems. Specifically, a new criterion is developed for the stability of the TDE-error within an adaptive robust controller design without the infinitesimal time delay assumption. With the proposed adaptive robust control, there is no need for determination of uncertainties upper-bounds. Simulation results illustrate the efficacy of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号