首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern.  相似文献   

2.
This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results.  相似文献   

3.
In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern.  相似文献   

4.
Load–frequency control is one of the most important issues in power system operation. In this paper, a Fractional Order PID (FOPID) controller based on Gases Brownian Motion Optimization (GBMO) is used in order to mitigate frequency and exchanged power deviation in two-area power system with considering governor saturation limit. In a FOPID controller derivative and integrator parts have non-integer orders which should be determined by designer. FOPID controller has more flexibility than PID controller. The GBMO algorithm is a recently introduced search method that has suitable accuracy and convergence rate. Thus, this paper uses the advantages of FOPID controller as well as GBMO algorithm to solve load–frequency control. However, computational load will higher than conventional controllers due to more complexity of design procedure. Also, a GBMO based fuzzy controller is designed and analyzed in detail. The performance of the proposed controller in time domain and its robustness are verified according to comparison with other controllers like GBMO based fuzzy controller and PI controller that used for load–frequency control system in confronting with model parameters variations.  相似文献   

5.
This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.  相似文献   

6.
针对交流伺服电机作为驱动装置的2-DOF并联机器人,设计出一种带有积分切换面的自适应滑模控制器。首先,带有积分运算切换面的变结构控制器使系统具有对未知参数变化和外部干扰不敏感的特性。其次,通过设计一种自适应律,实现对系统不确定量的在线辨识估计,以辨识结果实时调整控制器参数,以削弱系统抖动,提高了控制系统的实用性。仿真结果表明所设计控制器抗干扰能力强,能较好地实现2-DOF并联机器人各支路的运动控制,具有较好的稳定性和鲁棒性能。  相似文献   

7.
通过直线伺服鲁棒跟踪控制方法提高轮廓加工精度   总被引:2,自引:0,他引:2  
为了减小零件加工的轮廓误差,提出了一种采用直线伺服驱动的零相位跟踪控制器(ZPETC)和干扰观测器 (DOB)相结合的鲁棒跟踪控制策略。零相位误差跟踪控制器作为前馈跟踪控制器,提高了快速性,使系统实现准确跟踪;基于干扰观测器的鲁棒反馈控制器补偿了外部扰动、未建模动态、系统参数变化和机械非线性等不确定因素,并根据预测到的干扰信息对各轴进行补偿以消除干扰对系统的影响,从而保证了系统的强鲁棒性能。仿真结果表明所提出的控制方案是有效的,既能实现完好跟踪,又有较强的鲁棒性能,从而提高了轮廓加工精度。  相似文献   

8.
在机电传动实验系统中,矢量控制是重要的实验内容之一,但电机参数时变和负载波动等因素对系统性能有很大的不良影响,针对这一问题,本文采用了一种自适应模糊PID控制器作为机电传动实验系统中矢量控制的速度调节器,该调节器可以利用模糊控制规则根据不同偏差E和偏差变化率Ec对PID参数的要求,在线对PID参数进行调整。实验和仿真结果表明,采用该控制器的实验系统不仅具有良好的动静态性能,而且较好的鲁棒性和抗干扰性能。  相似文献   

9.
The interval type-2 fuzzy logic controller (IT2-FLC), with footprint of uncertainty (FOU) in membership functions (MF), has increasingly recognized for controlling uncertainties and nonlinearities. Within the ambit of this, the efficient interval type-2 fuzzy precompensated PID (IT2FP-PID) controller is designed for trajectory tracking of 2-DOF robotic manipulator with variable payload. A systematic strategy for optimizing the controller parameters along with scaling factors and the antecedent MF parameters for minimization of performance metric integral time absolute error (ITAE) is presented. Prominently, recently proposed optimization technique hybridizing grey wolf optimizer and artificial bee colony algorithm (GWO–ABC) is utilized for solving this high-dimensional constrained optimization problem. In order to witness effectiveness, the performance is compared with type-1 fuzzy precompensated PID (T1FP-PID), fuzzy PID (FPID), and conventional PID controllers. More significantly, the robustness of IT2FP-PID is examined for payload variation, model uncertainties, external disturbance, and noise cancellation. After experimental outcome, it is inferred that IT2FP-PID controller outperforms others and can be referred as a viable alternative for controlling nonlinear complex systems with higher uncertainties.  相似文献   

10.
This paper presents a novel contribution of a low complexity control scheme for voltage control of a dynamic voltage restorer (DVR). The scheme proposed utilizes an error-driven proportional–integral–derivative (PID) controller to guarantee better power quality performance in terms of voltage enhancement and stabilization of the buses, energy efficient utilization, and harmonic distortion reduction in a distribution network. This method maintains the load voltage close to or equal to the nominal value in terms of various voltage disturbances such as balanced and unbalanced sag/swell, voltage imbalance, notching, different fault conditions as well as power system harmonic distortion. A grasshopper optimization algorithm (GOA) is used to tune the gain values of the PID controller. In order to validate the effectiveness of the proposed DVR controller, first, a fractional order PID controller was presented and compared with the proposed one. Further, a comparative performance evaluation of four optimization techniques, namely Cuckoo search (CSA), GOA, Flower pollination (FBA), and Grey wolf optimizer (GWO), is presented to compare between the PID and FOPID performance in terms of fault conditions in order to achieve a global minimum error and fast dynamic response of the proposed controller. Second, a comparative analysis of simulation results obtained using the proposed controller and those obtained using an active disturbance rejection controller (ADRC) is presented, and it was found that the performance of the optimal PID is better than the performance of the conventional ADRC. Finally, the effectiveness of the presented DVR with the controller proposed has been assessed by time-domain simulations in the MATLAB/Simulink platform.  相似文献   

11.
研究了自抗扰控制技术在风力发电变桨距控制系统中的应用。首先介绍了风力发电机组的机理模型,然后介绍了自抗扰控制的基本原理。最后,设计了自抗扰控制器,并介绍了其参数整定方法,并应用在了风力发电的变桨距控制系统中。仿真结果表明这种方法可以有效抑制随机风扰动下电机转速偏差,实现恒功率控制。  相似文献   

12.
This paper presents a novel finite-time sliding mode controller applied to perturbed second order systems. The proposed scheme employs a disturbance observer that can identify growing in time disturbances. Then, the observer is combined with a sliding mode controller to achieve finite-time stabilization of the second-order system. The convergence of the observer as well as the finite-time stability of the closed-loop system is theoretically demonstrated. Besides, it is also shown that the finite-time convergence properties of a given controller can be enhanced when using a compensation term based on the disturbance observer. The proposed controller is compared with a twisting algorithm and a finite-time sliding mode controller with disturbance estimation. Also, a conventional proportional integral derivative (PID) controller is combined with the proposed disturbance observer in a trajectory tracking task. Numerical simulations indicate that the proposed controller attains finite-time stabilization of the second order system by requiring a less amount of power than that demanded by the other control schemes and without being affected by the peaking phenomenon. Besides, the performance of the PID technique is enhanced by applying the proposed control methodology.  相似文献   

13.
The linear active disturbance approach is employed to deal with the load frequency control issue of a single area wind power system based on doubly fed induction generator, and the performance of the control law is optimized by using the bat-inspired algorithm. The load frequency control issue has become more challenging in a complex power system based on wind energy conversion system due to the varying feature of the wind penetration, and sustaining the balance between the power generation and demand by rejecting the internal uncertainties in the process model and the external disturbances simultaneously. In the framework of the presented linear active disturbance rejection control approach, by constructing an extended state observer, the total disturbance, including all the unmodelled dynamics in the process model and the external disturbances, can be estimated in real time and then compensated by a simple linear PD control law. The controller parameters tuning is then simplified into the optimization of the two bandwidths: observer bandwidth, and the controller bandwidth. Then, this issue can be achieved by employing the heuristic modified bat inspired algorithm based on the optimization of the proposed performance index. The effectiveness of the proposed approach is validated by the extensive simulation examples of the load frequency control issue involved in the single area power system, taking into account different wind penetration, as well as the external disturbances. The performance robustness of the proposed approach against the parameters perturbation in the process model is also demonstrated via the Monte-Carlo method. The performance superiority of the proposed approach over the conventional Proportional Integral and Fuzzy-Proportional Integral based controller even in the presence of external disturbances and uncertainty in power system parameters under different cases of high wind penetration is also validated from the simulation results.  相似文献   

14.
基于预测函数控制和扰动观测器的永磁同步电机速度控制   总被引:3,自引:0,他引:3  
设计了基于预测函数控制的速度控制器,以减小永磁同步电机的转矩波动,提高电机的转速控制精度。针对因外部扰动因素引起的控制器跟踪性能下降问题,设计了基于预测函数控制和扰动观测器的双环控制器;通过扰动观测器估计系统扰动,并据此产生转矩电流补偿量对控制量进行前馈修正,从而实现扰动的抑制。实验结果显示:当电机从静止跟踪到设定600 r/min转速时,系统没有超调,稳态精度为2 r/min;当电机以600 r/min稳速运行并加入1.6 N·m的转矩扰动时,转速最大波动为5 r/min。与传统的PI控制算法相比,所设计的控制器使转速波动减小了4.2% 。仿真分析和实验数据表明:基于预测函数控制和干扰观测器的控制器能够有效地抑制扰动,提高系统转速跟踪精度。  相似文献   

15.
针对扰动对永磁同步电机转速伺服系统性能的影响,提出了基于扰动观测器的电流环自适应滑模控制方法。设计了自适应律在线估计系统的内部参数摄动以补偿模型不确定性扰动。同时,设计了滑模扰动观测器实时估计系统外部负载扰动,并将观测值前馈补偿到电流环自适应滑模控制器,在提高系统鲁棒性的同时降低滑模控制系统的抖振。实验结果显示,采用基于扰动观测器的电流环自适应滑模控制方法,系统可快速、准确、无超调地跟踪900r/min的速度指令,调节时间为0.08s,稳态误差为±5r/min。加入0.6N·m的负载扰动,该控制方法的最大转速波动为21r/min,比PI控制方法的转速波动减小了3.4%。仿真和实验结果表明,基于扰动观测器的电流环自适应控制方法提高了永磁同步电机转速伺服系统的鲁棒性和动态响应性能,同时可有效抑制滑模控制系统的抖振。  相似文献   

16.
为了提高永磁同步风力发电机的调速性能,结合自适应内模控制,将神经网络方法用于永磁同步风力发电机调速控制系统,设计了神经网络自适应速度控制器。基于MATLAB的仿真结果证明,神经网络自适应内模控制系统有很强的自适应能力和抗负载扰动能力,控制系统具有良好的静、动态特性。  相似文献   

17.
Dong L  Zhang Y  Gao Z 《ISA transactions》2012,51(3):410-419
A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis.  相似文献   

18.
自适应模糊控制方法在主动悬挂系统中的应用研究   总被引:3,自引:2,他引:1  
提出了一种主动悬挂系统的自适应模糊控制方法 ,该模糊控制方法可以在线自适应调整模糊控制的有关参数。 1/ 4车辆模型作为仿真对象 ,模糊控制器可以显著地减小车辆的振动及干扰 ,提高车辆的舒适性。仿真结果表明该模糊控制方法的有效性。另外 ,当主动悬挂系统模型参数发生变化时该模糊控制器表现出良好的鲁棒性  相似文献   

19.
永磁同步电机的模糊滑模控制   总被引:1,自引:0,他引:1  
为了实现高性能永磁同步电动机伺服系统快速而精确的位置跟踪控制,在滑模控制策略中引入模糊控制算法,设计了基于模糊规则的滑模控制器;并通过理论分析和控制仿真,证实了模糊滑模控制很好地解决了抖振问题,对参数变化和负载扰动具有很好的鲁棒性,永磁同步电机可获得很好的位置跟踪效果。  相似文献   

20.
High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back-stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号