首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This paper considers the problem of robust non-fragile observer-based dynamic event-triggered sliding mode control (SMC) for a class of discrete-time Lipschitz nonlinear networked control systems subject to sensor saturation and dead-zone input nonlinearity. First, an improved dynamic event-triggered scheme (DETS) in consideration of sensor saturation is proposed to reduce the number of data transmission. Next, a non-fragile observer is designed to estimate the system state, which facilitates the construction of the discrete sliding surface. By using a reformulated Lipschitz property, the error dynamics and sliding mode dynamics are modeled as a unified linear parameter varying (LPV) networked system with time-varying delays. Then, based on this model, sufficient conditions are established to guarantee the resulting closed-loop system to be asymptotically stable with a given disturbance attenuation level. Furthermore, an observer-based event-triggered SMC law is designed to drive the trajectories of the observer system onto a region near equilibrium point in a finite time in the presence of dead-zone input nonlinearity. Finally, two practical examples are employed to demonstrate the effectiveness of the proposed method.  相似文献   

2.
The finite-time boundedness issue for a class of discrete switched systems with time-varying delays is investigated via sliding mode control (SMC) approach. By employing the Lyapunov functional and average dwell time method, new sufficient conditions are derived to guarantee the finite-time boundedness of the dynamic system in the novel sliding surface. By solving an optimization problem, the sliding mode controller is synthesized such that the discrete reaching condition is satisfied and the chattering is reduced. A simulation example tests the feasibility of the provided SMC scheme.  相似文献   

3.
4.
This paper is concerned with the problem of finite-time H stability analysis of uncertain discrete-time Networked Control Systems (NCSs) with varying communication delays in a random fashion. Both measurement and actuation delays are modeled by two independent Bernoulli distributed white sequences. A dynamic output feedback controller is designed to realize finite time control for this class of NCSs with prescribed H performance level. An iterative algorithm is developed to compute the controller's parameters by means of the Cone Complementarity Linearization Method (CCLM). The validity and feasibility of the proposed stability criterion are confirmed via numerical simulation examples.  相似文献   

5.
6.
7.
8.
In this paper, we exploit the sliding mode control problem for a fluid power electrohydraulic actuator (EHA) system. To characterize the nonlinearity of the friction, the EHA system is modeled as a linear system with a system uncertainty. Practically, it is assumed that the system is also subject to the load disturbance and the external noise. An integral sliding mode controller is proposed to design. The advanced techniques such as the H control and the regional pole placement are employed to derive the optimal feedback gain which can be calculated by solving a necessary and sufficient condition in the form of linear matrix inequality. A sliding mode control law is developed such that the sliding mode reaching law is satisfied. Simulation and comparison results show the effectiveness of the proposed design method.  相似文献   

9.
10.
To improve the concurrency of leaders’ formation and followers’ containment, a difficult problem of designing the formation controller and the containment controller simultaneously should be addressed for networked systems. Motivated by this, this paper presents an even-triggered control framework for networked Euler–Lagrange systems to achieve formation-containment control even in the presence of uncertain parameters. An event-triggered formation controller is firstly designed for leaders to achieve the desired configuration. An event-triggered containment control law is then developed to guarantee that all the followers can converge to the convex hull formed by leaders. The key feature of the containment control law is that it does not necessitate any relative velocity information with respect to neighbor followers. Each controller’s gains are adaptively tuned using only local information. The parametric uncertainties are accommodated by using the adaptive updating law. Zeno behaviors of the triggering time sequences are also excluded. As a result, the communication burden of formation-containment system can be reduced. Numerical simulation is finally presented to verify the effectiveness of the proposed event-triggered formation-containment control framework.  相似文献   

11.
Liu A  Yu L  Zhang WA 《ISA transactions》2011,50(1):44-52
The receding horizon H(∞) control (RHHC) problem is investigated in this paper for a class of networked control systems (NCSs) with random delay and packet disordering. A new model is proposed to describe the NCS with random delay which may be larger than one sampling period. The random delay is modeled as a Markov chain while the closed-loop system is described as a Markovian jump system. Sufficient conditions for the closed-loop NCS to be stochastically stable and the performance index to be upper bounded are derived by using the receding optimization principle. Furthermore, by solving a semi-definite programming (SDP) with linear matrix inequalities (LMIs) constraint, a piecewise-constant receding horizon H(∞) controller is obtained, and the designed piecewise-constant controller ensures that the closed-loop NCS achieves a prescribed H(∞) disturbance attenuation level. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method.  相似文献   

12.
In order to remedy the effects of modeling uncertainty, measurement noise and input disturbance on the performance of the standard state-dependent Riccati equation (SDRE) filter, a new robust H(∞) SDRE filter design is developed in this paper. Based on the infinity-norm minimization criterion, the proposed filter effectively estimates the states of nonlinear uncertain system exposed to unknown disturbance inputs. Moreover, by assuming a mild Lipschitz condition on the chosen state-dependent coefficient form, fulfillment of a modified H(∞) performance index is guaranteed in the proposed filter. The effectiveness of the robust SDRE filter is demonstrated through numerical simulations where it brilliantly outperforms the conventional SDRE filter in presence of model uncertainties, disturbance and measurement noise, in terms of estimation error and region of convergence.  相似文献   

13.
In this paper, the H performance and control problems for linear systems with interval state or input delays and disturbances are investigated. In order to exploit more information on the delay range, the quadruple -integral terms and quadratic forms of triple integrals are introduced into the Lyapunov-Krasovskii functional (LKF). Particularly, an improved integral inequality is developed for estimation of the cross terms in triple-integral type, which displays significant improvement over the Wirtinger inequality. As a result, a less conservative H performance criterion is derived without requiring many slack variables. Based on the criterion, the H controller design approaches are obtained. Besides the numerical examples, the applications to the practical systems are also provided to illustrate the effectiveness of the proposed approaches.  相似文献   

14.
In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart–Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller.  相似文献   

15.
Chang WJ  Wu WY  Ku CC 《ISA transactions》2011,50(1):37-43
The purpose of this paper is to study the H(∞) constrained fuzzy controller design problem for discrete-time Takagi-Sugeno (T-S) fuzzy systems with multiplicative noises by using the state observer feedback technique. The proposed fuzzy controller design approach is developed based on the Parallel Distributed Compensation (PDC) technique. Through the Lyapunov stability criterion, the stability analysis is completed to develop stability conditions for the closed-loop systems. Besides, the H(∞) performance constraints is also considered in the stability condition derivations for the worst case effect of disturbance on system states. Solving these stability conditions via the two-step Linear Matrix Inequality (LMI) algorithm, the observer-based fuzzy controller is obtained to achieve the stability and H(∞) performance constraints, simultaneously. Finally, a numerical example is provided to verify the applicability and effectiveness of the proposed fuzzy control approach.  相似文献   

16.
17.
In this paper, some points to the stability analysis of the paper [Eker I, Second-order sliding mode control with experimental application, ISA Trans 2010;50:394–405] are presented. It is illustrated that the way the author in [1] proves stability, suffers lack of correct justification. A modification to the stability analysis is presented and the stability conditions are restated. Moreover, some other flaws in the original paper are addressed.  相似文献   

18.
19.
This paper presents a static output feedback controller design for discrete-time nonlinear systems exactly represented by Takagi–Sugeno models. By introducing past states in the control law as well as in the Lyapunov function, more relaxed results are obtained. Different conditions in terms of linear matrix inequalities are provided. The proposed conditions are less demanding than the ones in the literature. This is illustrated via numerical examples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号