首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For many important classes of pesticides including phenylurea herbicides (PUHs) and triazines, photosensitized transformation may be the only relevant elimination process in surface waters. In this study, the dissolved organic matter (DOM) mediated phototransformation of PUHs has been investigated in laboratory and field experiments. The results indicate that, in surface waters, the photosensitized transformation of PUHs may be significant and occurs primarily by an initial one-electron oxidation most likely involving excited triplet states of DOM (3DOM*) constituents. Using isoproturon and diuron as model compounds, it is shown that for a given DOM, quantum yield factors determined in the laboratory at a few selected wavelengths can be used to quantify the overall DOM- mediated phototransformation of a given PUH under sunlight irradiation. Furthermore, it is demonstrated that this process can be modeled for a given surface water, by applying the program GCSOLAR and a simple algorithm for cloud cover for quantification of average daily light intensities. Finally, the model has been successfully applied to predict vertical concentration profiles of isoproturon and diuron in a small lake in Switzerland. To our knowledge, this is the first study in which DOM-mediated phototransformation of organic pollutants has been quantitatively validated in the field.  相似文献   

2.
It is shown here that carbamazepine (CBZ) would undergo direct photolysis and reaction with (?)OH as the main phototransformation pathways in surface waters. Environmental lifetimes are expected to vary from a few weeks to several months, and predictions are in good agreement with available field data. Acridine (I) and 10,11-dihydro-10,11-trans-dihydroxy-CBZ (V) are the main quantified phototransformation intermediates upon direct photolysis and (?)OH reaction, respectively. The photochemical yield of mutagenic I from CBZ is in the 3-3.5% range, and it is similar for both direct photolysis and (?)OH reaction: it would undergo limited variation with environmental conditions. In contrast, the yield of V would vary in the 4-8.5% range depending on the conditions, because V is formed from CBZ by (?)OH (9.0% yield) more effectively than upon direct photolysis (1.4% yield). Other important photointermediates, mostly formed from CBZ upon (?)OH reaction, are an aromatic-ring-dihydroxylated CBZ (VI) and N,N-bis(2-carboxyphenyl)urea (VII). Compounds VI and VII are formed by photochemistry and are not reported as human metabolites; thus, they could be used as tracers of CBZ phototransformation in surface waters. Interestingly, VI has recently been detected in river water.  相似文献   

3.
Spatial and temporal distribution of singlet oxygen in Lake Superior   总被引:2,自引:0,他引:2  
A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.  相似文献   

4.
The synthetic polycyclic musks HHCB and AHTN are potential chemical markers for domestic wastewater contamination of surface waters. Understanding their environmental behavior is important to evaluate their suitability as markers. This study focuses on the quantification of the processes that lead to an elimination in lakes. Rate constants for all relevant processes were estimated based on laboratory studies and models previously described. In lake Zurich, during winter time, both compounds are eliminated primarily by outflowing water and due to losses to the atmosphere. In summer, direct photolysis represents the predominant elimination process for AHTN in the epilimnion of lake Zurich (quantum yield, 0.12), whereas for HHCB, photochemical degradation is still negligible. HHCB and AHTN were then measured in effluents of Swiss wastewater treatment plants (WWTPs), in remote and anthropogenically influenced Swiss surface waters, and in Mediterranean seawater using an analytical procedure based on SPE and GC-MS-SIM with D6-HHCB as internal standard (LODs for natural waters, 2 and 1 ng/L, respectively). In winter, concentrations of HHCB and AHTN in lakes (<2-47 and <1-18 ng/L, respectively) correlated with the anthropogenic burden by domestic wastewater (ratio population per water throughflow), demonstrating the suitability of these compounds as quantitative, source-specific markers. In summer, however, no such correlations were observed. Vertical concentration profiles in lake Zurich indicated significant losses in the epilimnion during summer, mainly for AHTN, and could be rationalized with a lake modeling program (MASASlight), considering measured, average loads from WWTP effluents (0.80 +/- 0.22 and 0.32 +/- 0.11 mg person(-1) d(-1) for HHCB and AHTN, respectively) and the estimated rate constants for elimination processes.  相似文献   

5.
Triclosan is used as an antimicrobial agent in a wide range of medical and consumer care products. To investigate the occurrence and fate of triclosan in the aquatic environment, analytical methods for the quantification of triclosan in surface water and wastewater, sludge, and sediment were developed. Furthermore, the fate of triclosan in a wastewater treatment plant (biological degradation, 79%; sorption to sludge, 15%; input into the receiving surface water, 6%) was measured during a field study. Despite the high overall removal rate, the concentration in the wastewater effluents were in the range of 42-213 ng/L leading to concentrations of 11-98 ng/L in the receiving rivers. Moreover, a high removal rate of 0.03 d(-1) for triclosan in the epilimnion of the lake Greifensee was observed. This is due to photochemical degradation. The measured vertical concentration profile of triclosan in a lake sediment core of lake Greifensee reflects its increased use over 30 years. As the measured concentrations in surface waters are in the range of the predicted no effect concentration of 50 ng/L, more measurements and a detailed investigation of the degradation processes are needed.  相似文献   

6.
Aquatic photochemistry of nitrofuran antibiotics   总被引:4,自引:0,他引:4  
The aquatic photochemical degradation of a class of pharmaceuticals known as the nitrofuran antibiotics (furaltadone, furazolidone, and nitrofurantoin) was investigated. Direct photolysis is the dominant photodegradation pathway for these compounds with the formation of a photostationary state between the syn and the anti isomers occurring during the first minutes of photolysis. The direct photolysis rate constant and quantum yield were calculated for each of the three nitrofurans. Reaction rate constants with reactive oxygen species (ROS), 102 and *OH, were also measured, and half-lives were calculated using environmentally relevant ROS concentrations. Half-lives calculated for reaction with 1O2 and *OH are in the ranges of 120-1900 and 74-82 h, respectively. When compared to the direct photolysis half-lives, 0.080-0.44 h in mid-summer at 45 degrees N latitude, it is clear that indirect photochemical processes cannot compete with direct photolysis. The major photodegradation product of the nitrofurans was found to be nitrofuraldehyde, which is also photolabile. Upon photolysis, nitrofuraldehyde produces NO, which is easily oxidized to nitrous acid. The acid produced further catalyzes the photodegradation of the parent nitrofuran antibiotics, leading to autocatalytic behavior. Natural waters were found to buffer the acid formation.  相似文献   

7.
Although various single-concentration measurements of pharmaceuticals are available in the literature, detailed information on the variation over time of the concentration and the load in wastewater effluents and rivers and on the fate of these compounds in the aquatic environment are lacking. We measured the concentrations of six pharmaceuticals, carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen, in the effluents of three wastewater treatment plants (WWTPs), in two rivers and in the water column of Lake Greifensee (Switzerland) over a time period of three months. In WWTP effluents, the concentrations reached 0.95 microg/L for carbamazepine, 0.06 microg/L for clofibric acid, 0.99 microg/L for diclofenac, 1.3 microg/L for ibuprofen, 0.18 microg/L for ketoprofen, and 2.6 microg/L for naproxen. The relative importance in terms of loads was carbamazepine, followed by diclofenac, naproxen, ibuprofen, clofibric acid, and ketoprofen. An overall removal rate of all these pharmaceuticals was estimated in surface waters, under real-world conditions (in a lake), using field measurements and modeling. Carbamazepine and clofibric acid were fairly persistent. Phototransformation was identified as the main elimination process of diclofenac in the lake water during the study period. With a relatively high sorption coefficient to particles, ibuprofen might be eliminated by sedimentation. For ketoprofen and naproxen, biodegradation and phototransformation might be elimination processes. For the first time, quantitative data regarding removal rates were determined in surface waters under real-world conditions. All these findings are important data for a risk assessment of these compounds in surface waters.  相似文献   

8.
The bactericide triclosan and methyl triclosan, an environmental transformation product thereof, were detected in lakes and in a river in Switzerland at concentrations of up to 74 and 2 ng L(-1), respectively. Both compounds were emitted via wastewater treatment plants (WWTPs), with methyl triclosan probably being formed by biological methylation. A regional mass balance for a lake (Greifensee) indicated significant removal of triclosan by processes other than flushing. Laboratory experiments showed that triclosan in the dissociated form was rapidly decomposed in lake water when exposed to sunlight (half-life less than 1 h in August at 47 degrees latitude). Methyl triclosan and nondissociated triclosan, however, were relatively stable toward photodegradation. Modeling these experimental data for the situation of lake Greifensee indicated that photodegradation can account for the elimination of triclosan from the lake and suggested a seasonal dependence of the concentrations (lower in summer, higher in winter), consistent with observed concentrations. Although emissions of methyl triclosan from WWTPs were only approximately 2% relative to those of triclosan, its predicted concentration relative to triclosan in the epilimnion of the lake increases to 30% in summer. Passive sampling with semipermeable membrane devices (SPMDs) indicated the presence of methyl triclosan in lakes with inputs from anthropogenic sources but not in a remote mountain lake. Surprisingly, no parent triclosan was observed in the SPMDs from these lakes. Methyl triclosan appears to be preferentially accumulated in SPMDs under the conditions in these lakes, leading to concentrations comparable to those of persistent chlorinated organic pollutants.  相似文献   

9.
In this study, tetra- (#47), penta- (#99), and decabrominated (#209) diphenyl ethers were exposed (in isooctane) to summer sunlight at 60 degrees N, where their photochemical half-lives ranged from 0.6 to 203 h. Apparent quantum yields, ranging from 0.16 to 0.28, were applied to optical models to calculate the rates of direct photochemical decomposition at the surface (depth of 0 m) and in the mixing layer of the ocean. The calculated photolytic half-lives were 4-100 times as long in the mixing layer of the Baltic Sea and the North Atlantic Ocean as atthe surface of 0 m. Calculation of seasonal photochemical half-lives for the mixing layer of the North Atlantic Ocean from 0 degrees N to 60 degrees N showed that the solar photolysis effectively decomposes the congeners in the tropics. At mid- and high latitudes, where solar irradiances are lower outside summer, the photolysis rates for congeners #47 and #99 were often too low for their effective decomposition in the mixing layer. Although solar radiation can potentially decompose the congeners in the mixing layer of the ocean effectively, seasonal and latitudal variation in solar irradiance as well as optical and mixing properties of the ocean can make the direct photolytic decomposition ineffective at high latitude and the coastal ocean.  相似文献   

10.
A new approach was developed to account for the contribution of indirect photolysis of pesticides and pharmaceuticals in which laboratory test conditions are similar to those prevalent in the aqueous environment. Rates of photolysis as a function of water composition were investigated for several aquatic contaminants. Using the laboratory-based test system, PhotoFate, the dependence of phototransformation rates on concentrations of natural water constituents that are radical producers and scavengers (nitrate, colored dissolved organic matter, bicarbonate) was studied. Mean half-lives of the model compounds in the presence of water constituents were compared to their direct photolysis half-lives to assess the contribution of photosensitized reactions to their fate in surface waters. Reactions mediated by .OH were predominant in waters with high nitrate concentrations. Colored dissolved organic matter (cDOM) acted mainly as a radiation filter and had a more important role in scavenging radicals than in their production. However, in low nitrate waters, the contribution of cDOM-derived reactive intermediates to the degradation of parent compounds became more apparent  相似文献   

11.
Microcystins (MCs) produced by cyanobacteria are strong hepatotoxins and classified as possible carcinogens. MCs pose a considerable threat to consumers of tainted drinking and surface waters, but the photochemical fate of dissolved MCs in the environment has received limited attention. MCs are released into the environment upon cell lysis along with photoactive pigments including phycocyanin and chlorophyll a. The concentrations of MCs and pigments are expected to be greatest during a bloom event. These blooms occur in sunlit surface water and thus MCs can undergo a variety of solar initiated or photosensitized transformations. We report herein the role of oxygen, sensitizer, and light on the photochemical fate of MCs. The phycocyanin photosensitized transformation of MCs is elucidated, and photosensitized isomerization plays an important role in the process. The UV-A portion of sunlight was simulated using 350 nm light and the phototransformations of three MC variants (-LR, -RR, -LF) were investigated. Singlet oxygen leads to photooxidation of phycocyanin, the predominant pigment of cyanobacteria, hence, reducing the phototransformation rate of MCs. The phototransformation rate of MC-LR increases as pH decreases. The pH effect may be the result of MCs association with phycocyanin. Our results indicate photosensitized processes may play a key role in the photochemical transformation of MCs in the natural water.  相似文献   

12.
The aquatic photochemical behavior of a class of sulfa drugs containing six-membered heterocyclic substituents (sulfamethazine, sulfamerazine, sulfadiazine, sulfachloropyridazine, and sulfadimethoxine) was investigated. Photodegradation of the sulfa drugs in a natural water sample was significantly enhanced relative to the degradation in deionized water, with the exception of sulfadimethoxine. This indicated an indirect photochemical process that was identified through the use of quenchers to be attributable to interaction with triplet excited-state dissolved organic matter (3DOM). The direct photolysis rate constant and quantum yield for both the neutral and anionic species of each sulfa drug were calculated using matrix deconvolution methods. The quantum yield values range from 0.01 x 10(-3) for the neutral form of sulfadimethoxine to 5 x 10(-3) for the anionic form of sulfamethazine and are significantly lower than those observed in a previous study for sulfa drugs containing five-membered heterocyclic substituents, although the rate constants are of similar magnitude. The primary product formed in both direct and indirect photodegradation for all five compounds was identified as a sulfur dioxide extrusion product. The predicted environmental half-lives solely attributable to direct photolysis range from 8.6 h in midsummer at 30 degrees latitude in pH 7 surface water for sulfachloropyridazine to 420 h in midwinter at 45 degrees in pH 7 surface water for sulfadimethoxine. These half-lives, except for sulfadimethoxine, will be decreased by interaction with 3DOM.  相似文献   

13.
Photodecomposition of methylmercury in an Arctic Alaskan lake   总被引:1,自引:0,他引:1  
Sunlight-induced decomposition of monomethylmercury (MMHg) reduces its availability for accumulation in aquatic food webs. We examined MMHg degradation in epilimnetic waters of Toolik Lake (68 degrees 38' N, 149 degrees 36' W) in arctic Alaska, a region illuminated by sunlight almost continuously during the summer. MMHg decomposition in surface water of Toolik Lake is exclusively abiotic and mediated by sunlight; comparable rates of MMHg decomposition were observed in filter-sterilized and unfiltered surface waters incubated under in situ sunlight and temperature conditions, and no MMHg was degraded in unfiltered aliquots incubated in the dark. Rates of photodecomposition are first order with respect to both MMHg concentration and the intensity of photosynthetically active radiation (PAR), except at the lake surface where rates of photochemical degradation are enhanced relative to PAR intensity and may be attributed to an additional influence of ultraviolet light. The estimated annual loss of MMHg to photodecomposition in Toolik Lake, though limited to a 100-d ice-free season, accounts for about 80% of the MMHg mobilized annually from in situ sedimentary production, the primary source in Toolik Lake. These results suggest that greater light attenuation in lacustrine surface waters, a potential result of increased loadings of dissolved organic matter due to continued warming in the Arctic, may result in less photodecomposition and subsequently greater availability of MMHg for bioaccumulation.  相似文献   

14.
Chemiluminescence measurements of the photochemical reduction of iron in cold, high-latitude waters (79 degrees N) show that a significant fraction (20%) of the dissolved iron is reduced when exposed to sunlight. The reduction is immediately initiated and the transition to a steady-state concentration of approximately 200 pM photochemical Fe(II) is achieved within approximately 40 s. The photochemical Fe(ll) is reoxidized to Fe(III) in less than a minute upon blocking the sunlight, much faster than expected, which is ascribed to reaction with photochemically produced oxidants. Using filters to block different ranges of the incident sunlight it was found that 35% of the photochemical Fe(II) was produced in the UV-B range (300-315 nm), 30% in the range 315-360 nm, and 30% at higher wavelengths. Measurements of light attenuation as a function of depth indicate that photochemical Fe(II) at a depth of 5 m in high-latitude waters should amount to approximately10% of that at the surface. The fast kinetics modulate the paramount importance that photochemical reactions may have on the bioavailability of iron in surface waters.  相似文献   

15.
Isoflavones are plant-derived chemicals that are potential endocrine disruptors. Although some recent studies have detected isoflavones in natural waters, little is known about their aquatic fates. The photochemical behaviors of the isoflavones daidzein, formononetin, biochanin A, genistein, and equol were studied under simulated solar light and natural sunlight. All of these phytoestrogens were found to be photolabile under certain conditions. Daidzein and formononetin degraded primarily by direct photolysis. Their expected near-surface summer half-lives in pH 7 water at 47° latitude are expected to be 10 and 4.6 h, respectively. Biochanin A, genistein, and equol degraded relatively slowly by direct photolysis at environmentally realistic pH values, though they showed significant degradation rate enhancements in the presence of natural organic matter (NOM). The indirect photolysis rates for these compounds scaled with NOM concentration, and NOM from microbial origin was found to be a more potent photosensitizer than NOM from terrestrial sources. Mechanistic studies were performed to determine the indirect photolysis pathways responsible for the rate enhancements. Results of these studies implicate reaction with both singlet oxygen and excited state triplet NOM. Environmental half-lives for biochanin A, genistein, and equol are expected to vary on the basis of pH as well as NOM source and concentration.  相似文献   

16.
Related to improving persistence assessment of active pharmaceutical ingredients (APIs), direct aqueous photolysis of beta-blockers: propranolol (hydrochloride salt), atenolol, and metoprolol (succinate salt) were investigated by exposing the samples (0.0003-10 mg L(-1)) to a solar irradiator (filtered xenon lamp: 290-800 nm) at 20-26 degrees C. Results suggested that direct photolysis in optically dilute solutions followed pseudo first-order kinetics. The measured half-lives of propranolol, atenolol, and metoprolol were approximately 16, 350, and 630 h, respectively. These were 3-5 orders of magnitude slower than the estimated minimum half-lives. The measured half-lives were related to day light surface conditions by comparing the light intensity of the lamp and the sun at different latitudes and seasons. Major direct photolysis products were identified from propranolol that led to a proposed reaction pathway, involving ring oxidation, rearrangement, and deoxygenation. Electron paramagnetic resonance (EPR) spectroscopy results confirmed that at least one carbon-based radical intermediate was formed during the direct photolysis of propranolol in aqueous solutions. The overall results demonstrated that with fast direct photolysis half-lives, propranolol is unlikely to be persistent in natural waters. Further work is needed to investigate indirect photolysis of atenolol and metoprolol in surface waters in order to understand the overall persistence of these APIs in the environment.  相似文献   

17.
To construct accurate risk assessment models for engineered nanomaterials, there is urgent need for information on the reactivity (or conversely, persistence) and transformation pathways of these materials in the natural environment. As an important step toward addressing this issue, we have characterized the products formed when aqueous C(60) clusters (nC(60)) are exposed to natural sunlight and also have assessed the wavelengths primarily responsible for phototransformation. Long-wavelength light (λ ≥ 400 nm) isolated from sunlight, was shown to be important in both the phototransformation of nC(60) and in the production of (1)O(2). The significance of visible light in mediating the phototransformation of nC(60) was supported by additional experiments with monochromatic light in which the apparent quantum yield at 436 nm (Φ(436 nm) = (2.08 ± 0.08) × 10(-5)) was comparable to that at 366 nm (Φ(366 nm) = (2.02 ± 0.07) × 10(-5)). LDI-TOF mass spectrometry indicated that most of the photoproducts formed after 947 h of irradiation in natural sunlight retain a 60 atom carbon structure. A combination of (13)C NMR analysis of (13)C-enriched nC(60), X-ray photoelectron spectroscopy and FTIR indicated that photoproducts have olefinic carbon atoms as well as a variety of oxygen-containing functional groups, including vinyl ether and carbonyl or carboxyl groups, whose presence destroys the native π-electron system of C(60). Thus, the photoreactivity of nC(60) in sunlight leads to the formation of water-soluble C(60) derivatives.  相似文献   

18.
Aqueous photochemical reaction kinetics and transformations of fluoxetine   总被引:3,自引:0,他引:3  
Fluoxetine (FLX) was shown to be photoreactive in sunlit surface waters. FLX degraded in deionized water when exposed to simulated sunlight with a half-life of 55.2+/-3.6 h(-1). Photodegradation products were identified using high performance liquid chromatography-UV (HPLC-UV) and liquid chromatography tandem mass spectrometry (LC-MS-MS) using electrospray (ES) ionization. Defluorination of the trifluoromethyl group in FLX and in fluometuron and flutalanil,two other compounds containing this functional group, is suggested to be a common direct photolysis pathway for trifluoromethylated compounds. Products resulting from O-dealkylation of FLX were also observed. The rate of degradation was faster in synthetic field water where .OH was the likely dominant oxidant in the system. The bimolecular rate constant for the reaction between FLX and .OH was measured as (8.4+/-0.5) x 10(9) and (9.6 +/-0.8) x 10(9) M(-1) s(-1) using two different methods of competition kinetics. Indirect photodegradation reactions could lead to the production of hydroxylated and O-dealkylated compounds. Although direct photolysis could potentially limitthe persistence of FLX in surface waters, its degradation by indirect photolysis would proceed faster. Thus, this latter process could be important in the elimination of FLX in surface waters.  相似文献   

19.
Mechanistic understanding of sunlight-induced natural processes for production of dissolved gaseous mercury (DGM) in freshwaters has remained limited, and few direct field tests of the mechanistic hypotheses are available. We exposed ferric iron salt-spiked fresh surface lake water (Whitefish Bay, Lake Superior, MI) in Teflon bottles and pond water (Oak Ridge, TN) in quartz bottles to sunlight in the field to infer if sunlight and Fe(III)-induced photochemical production of DGM could mechanistically contribute partly to natural photochemical production of DGM in freshwaters. We found that exposure of freshwater spiked with fresh Fe(III) (approximately 5 or 10 microM) to sunlight led to repeatable, significantly larger increases in DGM production (e.g., 380% in 1 h, 420% in 2 h, and 470% in 4 h for Whitefish Bay water) than exposure without the spike (e.g., 200% in 6 h). DGM increased with increasing exposure time and then often appeared to approach a steady state in the tests. Higher Fe(III) spike levels resulted in the same, or even less, DGM production. Storage of the water with or without Fe(III) spike in the dark after sunlight exposure led to significant, apparently first-order, decreases in DGM. These phenomena were hypothetically attributed to sunlight-induced photochemical production of highly reducing organic free radicals through photolysis of Fe(III)-organic acid coordination compounds and subsequent reduction of Hg(II) to Hg(0) by the organic free radicals; the reduction was also accompanied by dark oxidation of Hg(0) by photochemically originated oxidants (e.g., .OH). This study suggests that sunlight and Fe(III)-induced photochemical reduction of Hg(II) could be one of the mechanisms responsible for natural photochemical production of DGM in freshwaters and that Fe species may be influential in mediating Hg chemodynamics and its subsequent toxicity in aquatic ecosystems.  相似文献   

20.
Phototransformation of the widely used benzodiazepine pharmaceuticals diazepam and human metabolites nordiazepam, temazepam and oxazepam under simulated sunlight in water was investigated. Photolysis experiments were conducted in the presence and absence of humic acids. Half-lives for each of the benzodiazepine pharmaceuticals were <200 h (under all conditions) suggesting that phototransformation is an important process for such chemicals in the photic zone of receiving waters. Due to the observed phototransformation of the benzodiazepines, significant emphasis was placed on identification of the photoproducts. A total of fourteen photoproducts, including benzophenones, acridinones and quinazolinones or quinazolines was identified and measured by liquid chromatography-multistage mass spectrometry (LC-MS(n)). Phototransformation studies were also undertaken on authentic samples of two of the identified photoproducts, 5-chloro-methylaminobenzophenone and 2-amino-5-chlorobenzophenone, in order to establish the phototransformation pathways. Interestingly, these two photoproducts showed relatively higher persistence than some of the benzodiazepines, suggesting that the fate and effects of photoproducts should also be incorporated into future risk assessments and environmental models of the fate of benzodiazepines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号