首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptano?c acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.  相似文献   

2.
The application of the photo-Fenton process for the treatment of wastewaters contaminated with diesel oil was investigated. This particular process has been widely studied for the photochemical degradation of highly toxic organic pollutants. Experiments were performed according to a factorial experimental design at two levels and two variables: H(2)O(2) concentration (5-200 mM) and Fe(2+) concentration (0.01-1 mM). Experimental results demonstrated that the photo-Fenton process is technically feasible for the treatment of wastewaters containing diesel oil constituents, with total mineralization. A combination of factorial experimental design and gradient descent techniques was employed to optimize the amount of the Fenton reagents, resulting in Fe(2+) (0.1 mM) and H(2)O(2) (50 mM). These optimized levels did not exceed the limit for disposal of ferrous ions (0.27 mM) proposed at the local environmental legislation.  相似文献   

3.
B. Iurascu  D. Vione  A. Gil 《Water research》2009,43(5):1313-10231
New photo-Fenton catalysts have been prepared from synthetic layered clay laponite (laponite RD). Two series of Fe-laponite catalysts were synthesised, with or without thermal treatment of the mixture Fe polycations-laponite in the intercalation procedure. In each series, the intercalated solids underwent calcination at four temperatures, 250, 350, 450, and 550 °C. The catalysts were used for photo-assisted Fenton conversion of phenol, analyzing the influence of five operating factors: the wavelength of the light source (254 nm UV-C and 360 UV-A radiation), the amount of the catalyst (between 0 and 2 g/L), the initial phenol concentration (between 0.5 and 1.5 mmol/L), the initial concentration of hydrogen peroxide (between 20 and 100 mmol/L), and the initial pH of the solution (between 2.5 and 3.5). In all experiments, the temperature was kept constant at 30 °C. The results have shown that the almost complete conversion of phenol was possible, after only 5 min, under the following operating conditions: UV-C radiation; a pH of the aqueous solution of 3; a dose of 1 gcatalyst/L, and a hydrogen peroxide concentration of 50 mmol/L for a solution containing 1 mmol/L of phenol. The catalyst prepared under thermal treatment and calcined at 350 °C showed the best catalytic performance. A kinetic model was proposed for the process, testing its validity and estimating the rate constants.  相似文献   

4.
This paper reports on cork boiling and bleaching wastewaters treatment by solar photocatalytic processes, TiO2/UV and Fe2+/H2O2/UV (TiO2-only for bleaching wastewater), in a pilot plant with compound parabolic collectors. The photo-Fenton reaction (k = 0.12 L/kJUVr0 = 59.4 mg/kJUV) is much more efficient that TiO2 photocatalysis and TiO2 + S2O82− (k = 0.0024 L/kJUV, r0 = 1.36 mg/kJUV), leading to 94% mineralization of the bleaching wastewater after 31.5 kJUV/L, consuming 77.1 mM of H2O2 (3.0 mmol/kJUV) and using 20 mg/L of iron. For the cork boiling wastewater, after a slow initial reaction rate, the DOC degradation curve shows a first-order kinetics behaviour (k = 0.015 L/kJUV, r0 = 20.8 mg/kJUV) until 173 kJUV/L (≈300 mg C/L). According to the average oxidation state (AOS), toxicity profiles, respirometry and kinetic results obtained in two solar CPCs plants, the optimal energy dose estimated for phototreatment to reach a biodegradable effluent is 15 kJUV/L and 114 kJUV/L, consuming 33 mM and 151 mM of H2OT:/PGN/ELSEVIER/WR/web/00007490/2, achieving almost 49% and 48% mineralization of the wastewaters, respectively for the cork bleaching and boiling wastewaters.  相似文献   

5.
The present study provides results describing the degradation performance of the Sulfamethazine (SMT) antibiotic via photo-Fenton treatment. Experiments were carried out using 1 L solution samples of SMT (50 mg L−1) under different conditions. HPLC results reveal that both Fenton and photo-Fenton reactions were able to completely remove SMT antibiotic from the studied samples in less than 2 min treatment. Half-life times and kinetic parameters (assuming a pseudo-first-order kinetics at reaction initial stage, far from the equilibrium) for SMT degradation were determined and discussed. Hence, appropriate Fenton reagent loads are given to attain different targets proposed. TOC and HPLC data also revealed the presence of reaction intermediates; thus toxicity assays were performed regarding bacterial growth rate. The toxicity of an SMT solution was shown to increase during its degradation by means of photo-Fenton reactions.  相似文献   

6.
Winery wastewaters are characterised by large seasonal fluctuations in volume and composition and are often discarded with little or no treatment. A rotating biological contactor (RBC) was used to investigate microorganisms associated with the biological treatment of winery wastewater. Extensive biofilms developed on the RBC discs and contained a number of yeast and bacterial species that displayed a dynamic population shift during the evaluation period. This suggested that the naturally occurring microorganisms were able to form a stable biofilm and also reduce the chemical oxygen demand (COD) of winery wastewater (on average 43% with a retention time of 1h). One of the yeast isolates, MEA 5, was able to reduce the COD of synthetic wastewater by 95% and 46% within 24h under aerated and non-aerated conditions, respectively. The yeast isolates could therefore play an important role in the degradation of organic compounds under aerobic conditions, such as those associated with an RBC.  相似文献   

7.
肖斌 《山西建筑》2006,32(8):181-181,188
综述了含酚废水的生物处理技术和处理效果,特别对好氧生物和厌氧生物处理含酚废水的现状与发展进行了介绍和评述,指出生物法处理含酚废水具有高效低耗的特性。  相似文献   

8.
Feng J  Hu X  Yue PL 《Water research》2005,39(1):89-96
Discoloration and mineralization of an azo dye Orange II was conducted by using a bentonite clay-based Fe nanocomposite (Fe-B) film as a heterogeneous photo-Fenton catalyst in the presence of UVC light and H(2)O(2). Under optimal conditions (pH=3.0, 10 mM H(2)O(2), and 1 x 8W UVC), 100% discoloration and 50-60% TOC removal of 0.2 mM Orange II can be achieved in 90 and 120 min, respectively. The mineralization kinetics of 0.2 mM Orange II is much slower than the corresponding discoloration kinetics. Under the same conditions, the Fe leaching from the Fe-B-coated catalyst film is very low. The Fe-B-coated catalyst film could be used in the pre-treatment of wastewater for an integrated system consisting of a photochemical reactor and a biological reactor. Multi-run experimental results reveal that the Fe-B-coated catalyst film could have a long-term stability for the discoloration and mineralization of Orange II. A comparison between the performance of the Fe-B-coated catalyst film and a suspended Fe-B catalyst in the discoloration and mineralization of Orange II was also discussed.  相似文献   

9.
Characterization and treatment of a real pharmaceutical wastewater containing 775 mg dissolved organic carbon per liter by a solar photo-Fenton/biotreatment were studied. There were also many inorganic compounds present in the matrix. The most important chemical in this wastewater was nalidixic acid (45 mg/L), an antibiotic pertaining to the quinolone group. A Zahn-Wellens test demonstrated that the real bulk organic content of the wastewater was biodegradable, but only after long biomass adaptation; however, the nalidixic acid concentration remained constant, showing that it cannot be biodegraded. An alternative is chemical oxidation (photo-Fenton process) first to enhance biodegradability, followed by a biological treatment (Immobilized Biomass Reactor - IBR). In this case, two studies of photo-Fenton treatment of the real wastewater were performed, one with an excess of H2O2 (kinetic study) and another with controlled H2O2 dosing (biodegradability and toxicity studies). In the kinetic study, nalidixic acid completely disappeared after 190 min. In the other experiment with controlled H2O2, nalidixic acid degradation was complete at 66 mM of H2O2 consumed. Biodegradability and toxicity bioassays showed that photo-Fenton should be performed until total degradation of nalidixic acid before coupling a biological treatment. Analysis of the average oxidation state (AOS) demonstrated the formation of more oxidized intermediates. With this information, the photo-Fenton treatment time (190 min) and H2O2 dose (66 mM) necessary for adequate biodegradability of the wastewater could be determined. An IBR operated in batch mode was able to reduce the remaining DOC to less than 35 mg/L. Ammonium consumption and NO3 generation demonstrated that nitrification was also attained in the IBR. Overall DOC degradation efficiency of the combined photo-Fenton and biological treatment was over 95%, of which 33% correspond to the solar photochemical process and 62% to the biological treatment.  相似文献   

10.
Farré MJ  Doménech X  Peral J 《Water research》2006,40(13):2533-2540
The coupling of photo-Fenton (chemical) and biological treatments has been used for the removal of Diuron and Linuron herbicides from water. The chemical reaction was employed as a pre-treatment step for the conversion of the toxic and non-biodegradable herbicides into biodegradable intermediates that were subsequently removed by means of a biological sequencing batch reactor (SBR). Multivariate experimental design was used to select four photo-Fenton reagent dose combinations for the coupling experiments. Concentrations of hydrogen peroxide between 10 and 250 mg L(-1), and iron (II) concentrations between 2 and 20 mg L(-1) have been tested. 15.9 mg L(-1) of Fe(II) and 202 mg L(-1) of H(2)O(2) were needed to convert initial toxic and non-biodegradable herbicides into suitable intermediates for a subsequent biological treatment. Detrimental effects due to the excess of reactants were detected. Chemical oxygen demand (COD), average oxidation state (AOS), total organic carbon (TOC) and hydrogen peroxide concentration are the parameters used to trace the experiments course. Also, toxicity (EC(50)(15)) and biodegradability (BOD(5)/COD) tests were carried out at the end of each chemical oxidation. Complete disappearance of the herbicides from water was observed after the chemical treatment, while 3,4-dichloroaniline and 3,4-dichlorophenyl isocyanate were identified as the main by-products of the degradation process. Complete TOC removal was achieved after biological treatment in a SBR using a hydraulic retention time (HRT) of 2 days.  相似文献   

11.
Degradation of the emerging contaminant ibuprofen in water by photo-Fenton   总被引:3,自引:0,他引:3  
In this study the degradation of the worldwide Non-Steroidal Anti-Inflammatory Drug (NSAID) ibuprofen (IBP) by photo-Fenton reaction by use of solar artificial irradiation was carried out. Non-photocatalytic experiments (complex formation, photolysis and UV/Vis-H2O2 oxidation) were executed to evaluate the isolated effects and additional differentiated degradation pathways of IBP. The solar photolysis cleavage of H2O2 generates hydroxylated-IBP byproducts without mineralization. Fenton reaction, however promotes hydroxylation with a 10% contamination in form of a mineralization. In contrast photo-Fenton in addition promotes the decarboxylation of IBP and its total depletion is observed. In absence of H2O2 a decrease of IBP was observed in the Fe(II)/UV-Vis process due to the complex formation between iron and the IBP-carboxylic moiety. The degradation pathway can be described as an interconnected and successive principal decarboxylation and hydroxylation steps. TOC depletion of 40% was observed in photo-Fenton degradation. The iron-IBP binding was the key-point of the decarboxylation pathway. Both decarboxylation and hydroxylation mechanisms, as individual or parallel process are responsible for IBP removal in Fenton and photo-Fenton systems. An increase in the biodegradability of the final effluent after photo-Fenton treatment was observed. Final BOD5 of 25 mg L−1 was reached in contrast to the initial BOD5 shown by the untreated IBP solution (BOD5 < 1 mg L−1). The increase in the biodegradability of the photo-Fenton degradation byproducts opens the possibility for a complete remediation with a final post-biological treatment.  相似文献   

12.
Oxidation of explosives by Fenton and photo-Fenton processes   总被引:6,自引:0,他引:6  
Liou MJ  Lu MC  Chen JN 《Water research》2003,37(13):3172-3179
In this study, the Fenton process was used to explore the possibility of treating explosives, namely 2,4,6-trinitrophenol (PA), ammonium picronitrate (AP), 2,4-dinitrotoluene (DNT), methyl-2,4,6-trinitrophenylnitramine (Tetryl) and 2,4,6-Trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The photo-Fenton process was also conducted to compare its oxidation efficiency with the Fenton process. The inhibition of hydroxyl radical and theory of crystal field stabilization energy were introduced in this study. Results show that oxidation efficiencies in Fenton system are in the following sequence: DNT > PA > AP > TNT > Tetryl > RDX > HMX. The degradation of the explosives obeys a pseudo-first-order behavior, and possible decomposing mechanisms are also discussed. For all explosives, the oxidation rates significantly increased with increasing the concentration of Fe(II), as well as illumination with UV light.  相似文献   

13.
Feng J  Hu X  Yue PL 《Water research》2006,40(4):641-646
Effect of initial solution pH on the discoloration and mineralization of 0.2 mM Orange II by using two clay-based Fe nanocomposites (Fe-B (Fe supported on bentonite clay) and Fe-Lap-RD (Fe supported on laponite clay)) as catalysts was studied in detail. It was found that the initial solution pH not only influences the photo-catalytic activity of Fe-B and Fe-Lap-RD but also the Fe leaching from the two catalysts. Both catalysts show the best photo-catalytic activity at an initial solution pH of 3.0, and the activity of the catalysts decreases as the initial solution pH increases. At optimal conditions, 100% discoloration and mineralization of 0.2 mM Orange II are achieved in 60 and 120 min reaction in the presence of 10 mM H2O2, 1.0 g/L Fe-B, and 1 x 8 W UVC at initial solution pH of 3.0. 100% discoloration and 90% mineralization of 0.2 mM Orange II are achieved when Fe-Lap-RD is used as catalyst under the same conditions. Both catalysts also display a reasonable good photo-catalytic activity and negligible Fe leaching at an initial solution pH of 6.6 that is very close to neutral pH. This characteristic makes it possible for the Fe-B and Fe-Lap-RD to have a long-term stability. It also becomes feasible for the photo-Fenton process to treat the original wastewater without the need to pre-adjust the solution pH.  相似文献   

14.
In this paper, we present the photo-Fenton treatment in a solar pilot-plant scale of several EU priority hazardous substances (Alachlor, Atrazine, Chlorfenvinphos, Diuron and Isoproturon) dissolved in water. The results have been evaluated not only from the point of view of contaminant disappearance and mineralisation, but also of toxicity reduction and enhancement of biodegradability. Degradation was monitored by total organic carbon, pesticide concentration by HPLC-UV, inorganics released by ion chromatography, and biodegradability by the Zahn-Wellens (Z-W) test. The total volume of the solar photoreactor, composed of compound parabolic collectors with a total area of 4.16m2, was between 70 and 82 L. The treatment was shown to be effective, mineralising all of the pesticides tested, both alone and in mixtures. In order to find out the conditions for biocompatibility using the photo-Fenton reaction as a pre-treatment step, wastewater inoculated with unacclimated municipal sludge containing pesticides after certain degradation time was evaluated by the Z-W test. Biodegradability was enhanced (70% considered biodegradable) by the photo-Fenton treatment after 12-25min. It may be concluded that the photo-Fenton treatment consistently enhances biodegradability of wastewater containing pesticides.  相似文献   

15.
Biological treatability of an integrated dairy plant wastewater containing a small fraction of whey-washwaters mixture has been experimentally investigated. Emphasis has been placed on the assessment of the initially inert fraction, S1 and soluble residual microbial products, Sp. Parallel batch experiments have been conducted to determine the kinetic and stoichiometric coefficients of the degradable COD. The results have shown that the wastewater tested had practically no initially inert fraction, but generated residual microbial products amounting to 6–7% of the initial degradable COD. The results obtained have been fed into a set of equations describing the steady state operation of an activated sludge system with sludge recycle and a relationship indicating the variation of the total effluent COD with the sludge age has been defined for the wastewater tested. It is noted that effluent COD cannot be biologically reduced below 85 mg l−1, regardless of the sludge age, due to generation of residual fractions.  相似文献   

16.
Tokumura M  Ohta A  Znad HT  Kawase Y 《Water research》2006,40(20):3775-3784
The photochemical decolorization of coffee effluent has been examined by photo-Fenton (UV/Fe2+/H2O2) process. Effects of UV light intensity, initial coffee concentration, iron dose and H2O2 dose on the color removal of model coffee effluent have been investigated. The rate of decolorization increased with decreasing initial coffee effluent concentration. It was found that the Fe ion dose and UV light intensity enhanced the decolorization rate. The decolorization process of coffee effluent could be divided into three established phases. At the beginning of the photo-Fenton process, the instantaneous and significant increase in color of the solution was found (Phase-I). In the subsequent phase (Phase-II), the decolorization rate was initially fast and subsequently decreased. In Phase-III, the rate was accelerated and then the complete decolorization of model coffee effluent was achieved. In order to elucidate the mechanisms of coffee effluent color removal process, the concentration changes in Fe3+ and Fe2+ besides H2O2 were measured during the course of the photo-Fenton process. The rate-determining step in Phase-II was the photo-Fenton reaction or photoreduction of Fe3+. On the other hand, the decolorization process in Phase-III was highly affected by Fenton reaction or decomposition of H2O2 with Fe2+. About 93% mineralization of 250 mg L−1 model coffee effluent was achieved after 250 min. A comparative study for TiO2, ZnO and photo-Fenton oxidation processes has been also carried out and the photo-Fenton process was found to be the most effective for color removal of coffee effluent.  相似文献   

17.
Complete degradation of a pesticide mixture by a combination of a photo-Fenton pretreatment and an activated-sludge batch reactor is demonstrated. Four commercial pesticides, Laition, Metasystox, Sevnol and Ultracid were chosen for this experiment. The active ingredients are, respectively, dimethoate, oxydemeton-methyl, carbaryl and methidathion. The original pesticide concentration was 200 mg L−1. Biotreatment began after 31% photocatalytic mineralization, which after 5 h in a 6-L stirred batch-mode tank reactor with non-acclimated activated sludge, leaves the photo-Fenton effluent completely degraded. This biotreatment time is shorter than commonly found in municipal wastewater treatment plants (∼8-10 h). Therefore, the combined process is effective for rapid pesticide degradation in wastewater with complete removal of parent compounds and the associated DOC concentration. Nonetheless, assessment of this technology should take into account higher pesticide concentrations and how this factor affects both the photocatalytic and the biological oxidation.  相似文献   

18.
In this work, the photocatalytic degradation of the antibiotic sulfamethoxazole (SMX) by solar photo-Fenton at pilot plant scale was evaluated in distilled water (DW) and in seawater (SW). Degradation and mineralization of SMX were strongly hindered in SW compared to DW. The influence of H2O2 and iron concentration on the efficiency of the photocatalytic process was evaluated. An increase in iron concentration from 2.6 to 10.4 mg L−1 showed only a slight improvement in SMX degradation and mineralization. However, an increase in H2O2 concentration up to 120 mg L−1 during photo-Fenton in DW decreased SMX solution toxicity from 85% to 20%, according to results of Daphnia magna bioassays. The same behaviour was not observed after photo-Fenton treatment in SW. Despite 45% mineralization in SW, toxicity increased from 16% to 86% as shown by Vibrio fischeri bioassays, which suggests that the intermediates generated in SW are different from those in DW. A SMX degradation pathway during the photo-Fenton treatment in DW is proposed.  相似文献   

19.
The generation of disinfection by-products during water treatment can be controlled by reducing the levels of precursor species prior to the chlorination step. The Natural Organic Matter (NOM) is the principal organic precursor and conventional removal of pollutants such as coagulation, flocculation and filtration do not guarantee the total NOM removal. In this study the degradation of NOM model compounds (dihydroxy-benzene) as well as the removal of NOM from river water via photo-Fenton process in a CPC solar photo-reactor is presented. The effect of solar activated photo-Fenton reagent at pH 5.0 before and after a slow sand filtration (SSF) in waters containing natural iron species is investigated and the details reported. The results showed that the total transformation of dihydroxy-benzene compounds along a mineralization higher than 80% was obtained. The mineralization of the organic compounds dissolved in natural water was higher than in Milli-Q water, suggesting that the aqueous organic and inorganic components (metals, humic acids and photoactive species) positively affect the photocatalytic process. When 1.0 mg/L of Fe3+ is added to the system, the photo-Fenton degradation was improved. Therefore the photo-Fenton reagent could be an interesting complement to other processes for NOM removal. Comparing the response of two rivers as media for the organic compounds degradation it was observed that the NOM photo-degradation rate depends of the water composition.  相似文献   

20.
杜祥安 《砖瓦》2013,(12):36-37
设备外观装饰工艺由设备功能、使用环境进行选择,不同的外观处理工艺决定了选用不同的前期基体工艺表面处理方法。技术设计和工艺设计的合理性是关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号