首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of sodium glycocholate (NaGC) and sodium taurocholate (NaTC) on the mixed micelles for two systems consisting of NaGC-octaoxyethylene glycol monon-decyl ether (C10E8) and NaTC-C10E8 have been studied as a function of the mixed micelles’ compositions, polarities of the micelles’ interior and mean aggregation numbers. The compositions of the mixed micelles are calculated from critical micelle concentration (CMC) data by using excess thermodynamic quantities. The polarities and mean aggregation numbers are determined from pyrene fluorescence in the mixed micelles. Both mixed systems were nonideal, and the mole fraction of NaGC or NaTC in a mixed micelle near the CMC was less than that in the aqueous mixed solution. However, the mixed micelle of the NaTC-C10E8 system contained more bile salt molecules than that of the NaGC-C10E8 system because of a good miscibility of NaTC and C10E8 molecules. The pyrene fluorescence results suggested that the mixed micelles changed from C10E8-rich micelles to NaGC- or NaTC-rich micelles, and mean aggregation numbers of the mixed micelles decreased abruptly with increasing mole fraction of bile salts. In the low mole fraction range of bile salts, however, both the polarities and the mean aggregation numbers for the NaTC-C10E8 system are lower than those for the NaGC-C10E8 system because of the high mole fraction of NaTC in a mixed micelle, and also because of the different effect of the conjugated group between NaTC and NaGC molecules in the mixed micelles.  相似文献   

2.
The saturated amounts of solubilized cholesterol (Cch) in mixed micelles of sodium cholate (NaC) and octaoxy-ethylene glycol monon-decyl ether (C10E8) and of sodium zyme assay at 25, 29, 33 and 37°C. The Cch values in both systems increase with the total surfactant concentration. Because the mixed micelles for both systems tend to form C10E8-rich micelles near the critical micellar concentration (CMC) of the mixed system, the curves of cholesterol solubility approached the Cch curve for C10E8 alone near the CMC. The tendency of Cch to decrease in both systems with increasing mole fractions of bile salts resembled that of the mean aggregation number of micelles. Thermodynamic analyses of cholesterol solubilization showed that the free energy of solubilization, if considered as the transfer of cholesterol from solid state to micellar environment, increased with increasing mole fraction of bile salt. The enthalpy of cholesterol solubilization (ΔHS→M) decreased with the mole fraction of bile salts and showed break points around the mole fraction of 0.75 for the NaC−C10E8 system and at 0.60 for the NaDC−C10E8 system, respectively. These phenomena resemble earlier hydrophobicity data for mixed micelles by fluorescence measurements. Furthermore, Cch values for the NaDC−C10E8 system were larger than those for the NaC−C10E8 system because of the structural differences at the 7α hydroxyl group between NaC and NaDC. This fact was confirmed by thermodynamic calculations.  相似文献   

3.
Micellar and interfacial properties of mixed surfactant systems comprising benzalkonium chloride, a cationic surfactant and nonionic polyoxyethylene alkyl ether surfactants (POE: C10E7, C10E8, C10E9, C10E10) have been investigated by surface tension, fluorescence and dynamic light scattering techniques. Critical micelle concentration (CMC) for different mixing mole fractions has been investigated by surface tension and fluorescence measurements. Ideal CMC, mixed micellar composition (X 1 m , X 1 σ ), interaction parameters for mixed micelles (β m) and adsorption monolayer (β σ ), surface excess concentration (Гmax), minimum area per molecule (A min) and related thermodynamic properties have also been determined. Lowering of the CMC and negative interaction parameter values indicate synergism in the mixed micelle and monolayer formed, whereas, thermodynamic parameters evaluated for the proposed mixed systems indicate stability of the resulting micelles and monolayer. Micellar aggregation number (N agg) and hydrodynamic diameter (D h) computed from fluorescence and dynamic light scattering measurements respectively illustrate micellar growth in the mixed state. Results obtained for the proposed mixed systems can be helpful in designing smart materials for industrial surfactant based formulations.  相似文献   

4.
Mixed micellization and mixed monolayer formation of two bile salts namely sodium cholate (NaC) and sodium deoxycholate (NaDC), in the presence of sodium chloride (NaCl) and three hydrophobic salts including sodium acetate (NaAc), sodium butanoate (NaBu) and sodium hexanoate (NaHx) in 10 mM phosphate buffer (pH 6.5) at 37 °C were investigated by means of surface tension measurements. The experimental results were utilized to evaluate various parameters like critical micellar concentration (CMC), micellar and monolayer interaction parameter (β and β σ), micellar and monolayer mole fractions (X and Z), activity coefficients of two bile salts in mixed micelles and monolayer (f and f (σ)), surface excess (Γmax) and minimum surface area per molecule of bile salt (A min). Mixed micelles and mixed monolayer were found to show slight non-ideality and both these phenomena have been found to be affected differently in the presence of various additive salts with NaHx showing larger effects. Higher efficiency of NaHx in affecting both phenomena has been attributed to its appreciable hydrophobicity and surface activity, thus showing stronger interactions with bile salt molecules.  相似文献   

5.
To determine the physiochemical behavior of xenobiotic hydrocarbons in simulated intestinal content, we examined the partition of 7,12-dimethylbenzanthracene (DMBA), 3-methyl cholanthrene (MC), benzo(a)pyrene, and a polychlorinated biphenyl compound (PCB, Aroclor 1242) between an emulsified oil phase and a mixed micellar solution. In a mixed lipid-bile salt system, negligible amounts of hydrocarbon were present in aqueous solution below the critical micellar concentration (CMC) of sodium taurocholate. Once the CMC was obtained, the 4 hydrocarbons exhibited nearly identical partitions from the lipid into the micellar system which was enhanced by increased concentrations of bile salt, reduction of triglyceride concentration and the formation of mixed rather than pure bile salt micelles. The partition of DMBA and MC into micelles was optimized by long-chain monounsaturated oleic acid and monooleoylglycerol as compared to their octanoic or linoleic counterparts. Linoleic acid and monolinoleoylglycerol maximized the partition of PCB from the oil into the micellar phase. In a mixed micellar system excluding an oil phase and an excess of DMBA, a molar saturation ratio (mol hydrocarbon:mol bile salt) was calculated by regression analysis to be 0.162. This indicates that more than one molecule of hydrocarbon is solubilized per mixed micelle and that the aqueous solubilization of hydrocarbon may be attributed to true micellar solubilization.  相似文献   

6.
We have been investigating the factors determining the bioavailability of carotenoids from vegetables. The previous paper [Rich, G.T., Bailey, A.L., Faulks, R.M., Parker, M.L., Wickham, M.S.J., and Fillery-Travis, A. (2003) Solubilization of Carotenoids from Carrot Juice and Spinach in Lipid Phases: I. Modeling the Gastric Lumen, Lipids 38, 933–945] modeled the gastric lumen and studied the solubilization pathway of carotenes and lutein from carrot juice and homogenized spinach to oil. Using the same vegetable preparations, we have extended our investigations to solubilization pathways potentially available in the duodenum and looked at the ease of solubilization of carotenes and lutein within simplified lipid micellar and oil phases present within the duodenum during digestion. Micellar solubility of raw spinach carotenoids was low and was enhanced by freezing, which involved a blanching step. The efficiency of solubilization of carotenoids in glycodeoxycholate micelles decreased in the order luteincarrot>luteinblanched-frozen spinach>caroteneblanched-frozen spinach>carotenecarrot. Frozen spinach carotenoids were less soluble in simple micelles of taurocholate than of glycodeoxycholate. The results comparing the solubility of the carotenoids in mixed micelles (bile salt with lecithin) with simple bile salt micelles are explained by the relative stability of the carotenoid in the organelle compared to that in the micelle. The latter is largely determined by the polarity of the micelle. Below their critical micelle concentration (CMC), bile salts inhibit transfer of carotenoids from tissue to a lipid oil phase. Above their CMC, the bile salts that solubilize a carotenoid can provide an additional route to the oil from the tissue for that carotenoid by virtue of the equilibrium between micellar phases and the interfacial pathway. Mixed micellar phases inhibit transfer of both carotenoids from the tissue to the oil phase, thereby minimizing this futile pathway.  相似文献   

7.
Patatin was extracted from potato tubers (Solanum tuberosum L. cv. Spunta) and purified to homogeneity by ammonium sulfate salt fractionation and one sole chromatographic step. A spectrophotometric mixed micellar assay for patatin lipid acyl hydrolase (LAH) activity was designed with the detergent octaethylene glycol monododecyl ether (C12E8). Patatin LAH used p-nitrophenyl butyrate (PNP-butyrate) as substrate when solubilized in (C12E8) micelles. In the mixed micellar system, patatin LAH responds to the PNP-butyrate surface concentration expressed as mol% (=[PNP-butyrate]·100/([detergent]-critical micellar concentration)) and not to the molarity of PNP-butyrate. The kinetic parameters were determinined; V max was independent of the mixed micelle concentration, as was K m, when expressed as mol%. However, K m was dependent on C12E8 concentration when expressed in molar concentration. C12E8/PNP-butyrate proved to be a reliable system for assaying patatin LAH activity and is superior to the commonly used Triton X-100 and SDS methods. It permits investigation of the substrate requirements of patatin LAH activity because the concentration-independent K m can be determined both in mol% and as the absolute number of substrate molecules per micelle. In addition, the detergent did not affect the enzyme activity.  相似文献   

8.
Interfacial, thermodynamic, and performance properties of aqueous binary mixtures of α-sulfonato palmitic acid methyl ester, C14H29CH(SO3Na)COOCH3(PES), and hexaoxyethylene monododecyl ether, CH3(CH2)11(OCH2CH2)6OH (C12E6), were investigated with tensiometric, conductometric, fluorimetric, and viscometric techniques. The critical micelle concentration (CMC), maximum surface excess, minimum area per molecule of surfactant at the air/water interface, and the thermodynamics of micellization and adsorption were determined. The CMC was very low for mixed systems, indicating probable use as a detergent with less effect on the environment because of surfactant biodegradability and less amount in the environment. The interaction parameter βm, computed by using the theory of Rubingh and Maeda, indicated an attractive interaction (synergism) between the surfactant molecules, which was also confirmed by proton nuclear magnetic resonance studies in the mixed micelle. The micellar aggregation number (N agg), determined by using a steady-state fluorescence quenching method at a total surfactant concentration of about ∼10 mM at 25°C, was almost independent of the surfactant mixture composition. The micropolarity and the binding constant (K sv) for the C12E6/PES mixed system were determined by the ratio of the intensities (I 1/I 3) of the pyrene fluorescence emission spectrum, and the local microenvironment inside the micelle was found to be polar. The viscosity of the mixed system at all mole fractions suggested that mixed micelles are nonspherical in nature. The cloud point of oxyethylene group-containing surfactants was increased by the addition of PES. Foaming was temperature dependent, and a 1∶1 mixed system showed minimum foaming. All performance properties were composition dependent.  相似文献   

9.
Conductances of hexadecylpyridinium bromide (HPyBr) + tetradecyltrimethylammonium bromide (TTAB) mixtures over the entire mole fraction range of HPyBr (αHPyBr) were measured in pure water as well as in the presence of various aqueous ethylene glycol oligomers containing 10 and 30 wt% of each additive in their respective binary mixtures at 30°C. Each conductivity curve shows two breaks corresponding to two critical micelle concentrations (cmc; C1 and C2 over the whole mole fraction range of HPyBr + TTAB mixtures except in the presence of pure HPyBr and TTAB, where a single break was observed. From the conductivity data, various micellar paramelers in the absence and presence of glycol additives were computed. A variation in the micellar parameters in the presence of additive showed that additive introduction mainly influence the medium properties and therefore the micellar properties. However, no significant micelle-glycol interactions were observed even with an increase in the number of repeating units from ethylene glycol to polyethylene glycol 600. The mixing behavior of HPyBr + TTAB is close to nonideal and is identical in pure water and in the presence of various glycols. This has been attributed to the presence of synergistic interactions between unlike monomers at C1 that are not influenced even by the presence of additives. The appearance of the second cmc is mainly attributed to structural transitions of the mixed micelles at C1 with a further increase in surfactant concentration.  相似文献   

10.
Surfactant mixtures are used in many different industrial formulations. In this study, the mixed micelle formation behavior of 2 different cationic surfactants, namely dodecyltrimethylammonium bromide (DTAB) and benzyldimethylhexadecylammonium chloride (BDHAC), in the absence and presence of urea at various temperatures (298.15–318.15 K) was studied using the conductometric method. The attractive interaction between DTAB and BDHAC was estimated from the values of critical micelle concentration (CMC) and the CMC for ideal mixing (CMCid). Urea increases the CMC value as a result of the enrichment in the surface charge of the micelles/mixed micelles. The values of micellar mole fraction (X1Rub [Rubingh], X1M [Motomura], X1Rod [Rodenas]) and ideal micellar (X1id) of surfactant BDHAC were obtained by different models and are shown to exhibit the high contribution or effective involvement of BDHAC in mixed micelles and increase with increasing BDHAC mole fraction (α1). Activity coefficients (f1 and f2) were also evaluated from the relevant formula given in the literature. The negative values of the interaction parameters (β) show the attractive interaction among the studied components. Excess Gibbs free energy (?Gex) of micellization revealed that the stability of mixed micelles is higher in aqueous solution than in urea solution. The thermodynamic parameters, namely the Gibbs free energy change, enthalpy change, and entropy change (?Gom, ΔHom, and ?Som, respectively), were also calculated from the conventional standard equations.  相似文献   

11.
B. Borgström 《Lipids》1978,13(3):187-189
The equilibration of taurodeoxycholate between mixed micellar and aqueous phases has been studied by equilibrium dialysis. The presence of amphiphiles in the form of lecithin, long chain monoglyceride, and fatty acid in the bile salt solution will greatly decrease the bile salt concentration in the aqueous (intermicellar) phase. At high amphiphile concentration relative to bile salt, the concentration of bile salt in the aqueous phase will be below the critical micellar concentration (CMC) of the pure bile salt solution. Under these conditions, few simple micelles will be present and no binding of bile salts to protein takes place as indicated by experiments with colipase. The lowering of the concentration of bile salt in the aqueous phase by the presence of amphiphile may be a physiological mechanism to regulate bile salt absorption during the digestive phase of fat absorption.  相似文献   

12.
Trimeric-type anionic surfactants (3CntaAm, where n is a hydrocarbon chain length of 8, 10, or 12) with three hydrocarbon chains and three carboxylate headgroups were synthesized from tris(2-aminoethyl)amine, and their properties were investigated by surface tension, electrical conductivity, dynamic and static light-scattering, fluorescence of pyrene, and emulsification power techniques. The critical micelle concentrations (CMC) of 3CntaAm were 0.00092–0.00834 mmol dm−3, and the surface tensions at the CMC were 33.3–39.9 mN m−1. The areas per molecule occupied by 3C10taAm and 3C12taAm were extremely small, showing they were highly compact at the air/water interface. In addition, adsorption or micellization behavior of 3CntaAm was estimated by parameters such as pC 20 (the efficiency of surface adsorption), CMC/C 20 (the ease of adsorption relative to the ease of micellization), and ΔG M o (Gibbs energy of micellization). Dynamic and static light-scattering mesurements of 3CntaAm showed a hydrodynamic radius of 45–61 nm above the CMC and aggregation numbers of 10–82 at the CMC, respectively. The fluorescence intensity ratio of the first to the third band in the emission spectra of pyrene started to lower from far above the CMC for 3C8taAm and 3C10taAm, and below the CMC for 3C12taAm. This suggests that loose micelles or premicellar aggregates are formed in solutions. Mixtures of aqueous solutions of 3CntaAm and toluene formed oil-in-water-type emulsions, and the stabilizing abilities were in the order of 3C8taAm>3C10taAm>3C12taAm. The degree of emulsification of 3C8taAm remained at 69% after 24 h of standing. Thus, 3CntaAm exhibited unique properties superior to monomeric or dimeric surfactants that were significantly influenced by their hydrocarbon chain lengths.  相似文献   

13.
The interaction and synergism of some polyoxyethylenated fatty alcohol ether (POE) nonionic surfactants (C12E2, C12E3, C10E5, C10E7, where Cx indicates number of carbon atoms in the chain and Ey indicates number of oxyethylene glycol ethers) with trioxyethylenated dodecyl sulfonate (C12E3S) in mixed monolayer formation at the surface and in mixed micelle formation in aqueous solutions were studied at 25 and 40°C by calculating interaction parameters (βα, βM) from surface tension-concentration data by use of Rosen's equations based on the nonideal solution theory. All the systems investigated adapt reasonably well to the nonideal model, with negative values of βσ and βM (where M means micelle and σ refers to the air-liquid interface) indicating a favorable interaction between the mixed surfactants. Either at a monolayer or in a mixed micelle, the attractive interaction becomes stronger when the alkyl chain in the POE surfactant is longer, i.e., when the POE becomes more hydrophobic. The interaction increases in the order C10E7<C10E5<C12E3, C12E2. For the two C10E n (n= 5,7)/C12E3S systems, as temperature increases from 25 to 40°C, the interaction increases in a mixed micelle, but it decreases in a mixed monolayer. Synergism in mixed micelle formation exists for C12E3S/C10E n mixtures when X1 M , the mole fraction of POE in a mixed micelle, is ≈0.4–0.8, whereas synergism does not occur in the systems of C12E3S/C12E m due to the large difference between CMC1 and CMC2, i.e., large |In(C 1 M /C 2 M )| value (where CMC=critical micelle concentration). The degree of synergism in mixed micelle formation is temperature independent and is 0.23, 0.18, and close to zero for C10E5/C12E3S, C10E7/C12E3S, and C12E m (m=2,3)/C12E3S systems, respectively. Synergism in surface tension reduction effectiveness occurs in C12E3S/C12E2 and C12E3S/C12E3 systems. The mole fractions of POE in the solution phase are 0.302 and 0.333 for the two mixtures at the point of maximum synergism.  相似文献   

14.
The thermodynamics of mixed micellization of amitriptyline hydrochloride (AMT) with ionic liquid‐type imidazolium gemini surfactant ([C10‐4‐C10im] Br2), was investigated at different mole fractions and temperatures by surface tension measurements. The deviation of the critical micelle concentration (CMC) from the ideal critical micelle concentration (CMC * ), micellar mole fraction () from ideal micellar mole fraction (), the values of interaction parameter () and activity coefficients () (for both mixed micelles and mixed monolayer) explained the non‐ideal behavior (i.e., synergistic behavior) of binary mixtures. The excess free energy (?Gex) for the AMT‐[C10‐4‐C10im] Br2 binary mixtures explained the mixed micelles stability in comparison to micelles of [C10‐4‐C10im] Br2 and pure AMT. Interfacial parameters, i.e., Gibbs surface excess (), minimum head group area at air/water interface (), free energy of micellization (), and standard Gibbs energy of adsorption (?Gadso) were also evaluated for the systems. The standard entropy of adsorption (?Sadso) was found higher than the standard entropy of micellization (?Smo) at all mole fractions of AMT (α1).  相似文献   

15.
Bengt Borgström 《Lipids》1993,28(5):371-375
The long-chain phosphatidylcholine/sodium cholate aqueous system as substrate for human pancreatic phospholipase A2 (PLA2) was investigated. At a constant phosphatidylcholine (PC) concentration of 8 mM, the enzyme activity increased with a decrease in cholate (C) concentration up to a PC/C ratio of approximately 0.8 and then rather abruptly decreased to lower values at a ratio above 1.5. At ratios between 0.8 and 1.5, an increasing lag phase in the PLA2 activity was seen, indicating a progressive decrease in substrate availability to the enzyme. Reaction mixtures with a PC/C ratio of up to 0.67 were optically clear solutions composed of mixed bile salt/PC micelles of increasing mixed micellar aggregate size. Ratios between 0.67 and 1.5 were characterized by an increase in turbidity (at 330 and 450 nm) due to increasing formation of vesicles or liposomes. Above a PC/C ratio of 1.5, a sharp increase in turbidity was seen due to increasing formation of bilayer structures other than vesicles. Pure vesicles obtained by dialysis of mixed micellar solutions were not hydrolyzed by the enzyme. Addition of bile salts reversed the inhibition which was accompanied by a decrease in turbidity. Phosphatidylcholine was preferred as substrate for human PLA2 when present in large mixed disc-like bile salt micelles. Vesicular or other types of lamellar liquid-crystalline phases of long-chain phosphatidylcholine did not serve as substrate for PLA2.  相似文献   

16.
Surface tensions were determined for a mixture of an anionic fluorinated surfactant and a PEO-PPO-PEO triblock copolymer. The interactions between the two surfactant molecules in the mixed monolayer and the mixed micelle were studied through molecular interaction parameters (β σ, β M) and the molecule exchange energy (ε, ε m). It was noted that synergism and strong attractive interactions took place between the anionic fluorinated surfactant and the triblock copolymer molecules in both mixed micelles and mixed monolayers, reflected by the interaction parameter values of between −10 and −18 for all mixtures investigated. Moreover, it can be seen from the value of (ε − ε m) that when the mixture has a small amount of triblock copolymer, the formation of mixed micelle results in a greater decrease in energy than does the formation of a mixed monolayer. With an increase in the mole fraction of the triblock copolymer in the mixture, in order to obtain the lowest surface energy, surfactants tend to form mixed monolayers first, and then form mixed micelles.  相似文献   

17.
The viscosity of aqueous micellar solutions depends on the size and shape of the aggregates and thus can be adjusted by addition of another surfactant interacting with the original component, which alters the geometry of the molecule-pair consisting of two surfactants and influences strongly the size and shape of the mixed micelles. Ethanediyl-α,ω-bis(dimethyl dodecyl ammonium bromide), referred to as C12-2-C12·2Br, forms generally large micelles. Addition of a cationic surfactant (dodecyltrimethylammonium bromide, C12TMABr) or a nonionic surfactant (alkyl polyoxyethylene ether, C m E n ), the mixed micelle size is reduced violently since the electrostatic repulsion between the same charged heads of C12-2-C12·2Br and C12TMABr or the steric hindrance of the PEO chain of C m E n in the palisade layers of the mixed micelle, which leads to a decrease in the packing parameter P of the molecule-pair. As a result, the zero-shear viscosity (η 0) of the mixed solution reduces rapidly. In contrast, on adding an oppositely charged surfactant, η 0 of the mixed solution increases strongly since the P of the molecule-pair increases through electrostatic attraction between the oppositely charged heads. The typical cases occur in the mixtures of the anionic gemini surfactant, O,O′-bis(sodium 2-lauricate)-p-benzenediol C11pPHCNa, and the cationic surfactant C12-2-C12·2Br, C12TMABr or its homologue with a different size of heads.  相似文献   

18.
Interfacial, thermodynamic, and morphological properties of decaoxyethylene n-dodecylether [CH3 (CH2)11(OCH2CH2)10OH](C12E10) in aqueous solution were analyzed by tensiometric, viscometric, proton nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS) techniques. Dynamic and structural aspects at different temperatures in the absence and presence of sugars at different concentrations were measured. Critical micelle concentrations (CMC) were determined by surface tension measurements in the presence of ribose, glucose, and sucrose. The heat capacity (ΔC p.m.), transfer enthalpy (ΔH m.tr.), transfer heat capacities (ΔC p.m.tr.), micellization constant (K m ), Setchenow constant (K S N ), and partition coefficient (q) were determined and discussed as an extension of the usual thermodynamic quantities of micellization and adsorption at the air-water interface. An enthalpy-entropy compensation effect was observed with an isostructural temperature (T c ) of about 310 K for both micellization and interfacial adsorption. SANS measurements were taken to elucidate structural information, viz., aggregation number (N agg), shape, size, and number density (N m ) on C12E10 micelles in D2O at different concentrations of sugars (0.05, 0.02, 0.3, and 0.5 M) and temperatures (30, 45, and 60°C). Intrinsic viscosity gave the hydrated micellar volume (V h ), volume of the hydrocarbon core (V c ), and volume of the palisade layer of the oxyethylene (OE) unit (V OE). SANS, as well as rheological data, supported the formation of nonspherical micelles with or without sugars. By SANS, we also observed that at the studied temperature intervals, oblate ellipsoid micelles changed into prolate ellipsoids and the number density of micelles decreased with an increase in temperature both in the presence and in the absence of sugars and also on increasing the concentration of sugars. Proton NMR showed a change in chemical shift of the OE group of micelles above the CMC. We also studied the phase separation of C12E10 by sugars in cloud point measurements.  相似文献   

19.
The colloid chemical behaviour of the chromium stearate and palmitate in nonaqueous solutions have been investigated by solubility and viscometric methods. Chromium stearate and palmitate form no micellar aggregate in pyrindine but aggregate into micelles in benzene, toluene, xylene and carbon tetrachloride in the concn range of ca. 0.7–1.5×10−2 mole/liter. Viscometric studies can be utilized in estimating the concn of the metal soaps in fairly concd solution: 0.822–27.431 g/liter.  相似文献   

20.
Critical micelle concentrations of sodium salts of dodecylbenzene sulfonate, alpha-olefin (C16) sulfonate, and their mixtures have been evaluated by measuring the surface tensions of solutions at 298.15 K. Interaction parameters for mixed monolayer formation (βσ) and mixed-micelle formation (βM) have been calculated from the critical micelle concentration data. Densities of solutions of surfactants and their mixtures were measured with a vibrating-tube densimeter at 298.15 K. Apparent and partial molar volumes have been evaluated from solution density data. Results of the micellar properties have been eplained on the basis of a nonideal multicomponent mixed-micelle model. The mixed-surfactant system exhibits synergism in all aspects when the mole fraction of alpha-olefin sulfonate in the mixture is 0.2. Volumetric properties correlate well, as the partial molar volumes also show a minimum at the same composition of the mixture. Formation of a compact mixed micelle at this composition has been envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号