首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ehdectrical resistivity and Hall voltage were measured between 4.2 and 300 K on T12O3 crystals annealehd at 550°C for 24 h under oxygen pressures of 2×104 to 107 Pa. The carrier concentration varied from 7.97×1020 to 5.08×1020 cm−3, the low-temperature Hall mobility from 131 to 189 cm2/V.s, and the Fermi level from 7.1×104 to 5.05×104 J/mol above the bottom of the conduction band as P 02 was increased from 2×104 to 107 Pa. The dependence of Fermi level on carrier concentration and P 0l was consistent with a parabolic density-of-states function describing the conduction band. Over the entire region of oxygen pressure investigated, Fermi-Dirac statistics were required to describe the dependence of carrier concentration on P 02.  相似文献   

2.
Surface, grain-boundary, and volume inter diffusion coefficients for the NiO-Al2O3 system were measured concurrently by using a diffusion couple consisting of an A12O3 bicrystal and an NiO single crystal. The A12O3 bicrystals having various tilt angles were fabricated by firing 2 single crystals to be joined in an H2 atmosphere at 1800°C for 30 h. Diffusion profiles over the surface, along the grain boundary, and in the bulk of the bicrystal were determined with an electron probe microanalyzer. Mathematical analysis of the diffusion profiles gives D s = 7.41×10-2 exp (-35,200/ RT ), D gb = 2.14×10-1 exp (-63,100/ RT ) (tilt angle =30°), and D v = 1.26×104 exp (-104,000/ RT ). The grain-boundary diffusion coefficient increases with the mismatch at the boundary.  相似文献   

3.
On heat treatment in air the solubility of MgO or TiO2, in Al23 is too small to detect by lattice parameter shifts. The solubility of MgTiO3 in Al2O3 in air increased to the measured values, expressed as atomic fractions Mg:A1or Ti:A1of0.82 × lo-2, 1.43 × 10-2, and 1.75 × 10-2 at 1250°, 1650°, and 1850°C, respectively. In 1 atm hydrogen the TiO2 solubility expressed as the atomic fraction Ti:A1 is 0.55 × lo-2, 0.75 × 10W2, 1.15 × 10-2, and 1.50 × 10p2 at 1400°, 1500°, 1600°, and 1700°C, respectively. The increased solubility in H2 was attributed to reduction of the titanium ion. The solubility of MgO in A12O3 in vacuum (0.3μ) expressed as the atomic fraction Mg:A1 was measured as 1.10 × loW4, 3.00 × 10"4, 6.80 × 10–4, and 1.40 × 10-3 at 1530°, 1630°, 1730°, and 183O°C, respectively. These contents did not cause an observable change in lattice parameter, but a slight change was observed when MgO was dissolved in A12O3 in a hydrogen atmosphere.  相似文献   

4.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

5.
Glasses in the Na2O–Ba0–A12O3-Si02 system, nucleated with TiO2, were heat-treated to effect controlled crystallization. Resulting materials consisted of a dense, micro-crystalline mixture of nepheline (Na20–A12O3-2SiO2) and barium feldspar (BaO-A12O3-2Si02) in a glassy matrix. Thermal expansion coefficients (O° to 300° C) of these bodies ranged from 75 to 125 × 10 –7/°C. Glazes in the Na2O-CaO-PbO-B2O2-A1203-SiO2 system having expansion coefficients of about 40 to 80 × 10 -7/0°C were applied to the glass-ceramics. On firing, the glazes matured well and reacted with the bodies to form interlocking crystals at the interface. This interfacial region was investigated using several instrumental techniques, and the crystals were identified as plagioclase feldspar. Applying these compressive glazes resulted in modular of rupture up to five times that of the initial glass-ceramic. Calculated strengths correlated well with experimental values.  相似文献   

6.
Anion self-diffusion coefficients normal to (1102) were obtained for single-crystal Al2O3 in a 1.3 × 10 3 N/m2 (10−5 torr) vacuum at 1585° to 1840°C. Tracer was supplied from an initial 650 to 1300 A Al218O3 layer produced by the oxidation of vapor-deposited Al metal films in an 18O2 atmosphere at 520°C. Concentration gradients extended over depths of 3000 to 5000 A and were measured by mass spectrometry of material sputtered from the samples with a beam of Ar+ ions. Crystals which had not been preannealed to remove surface damage displayed enhanced diffusion. Diffusion coefficients from preannealed crystals may be described by D0 =6.4×105cm2/s, with an activation energy of 188 ± 7 kcal/mol. The diffusion is interpreted as an extrinsic vacancy mechanism.  相似文献   

7.
The thermal expansion of the hexagonal (6H) polytype of α-SiC was measured from 20° to 1000°C by the X-ray diffraction technique. The principal axial coefficients of thermal expansion were determined and can be expressed for that temperature range by second-order polynomials: α11= 3.27 × 10–6+ 3.25 × 10–9T – 1.36 × 10–12 T 2 (1/°C), and ş33= 3.18 × 10–6+ 2.48 × 10–9 T – 8.51 × 10–13 T 2 (1/°C). The σ11 is larger than α33 over the entire temperature range while the thermal expansion anisotropy, the δş value, increases continuously with increasing temperature from about 0.1 × 10–6/°C at room temperature to 0.4 × 10–6/°C at 1000°C. The thermal expansion and thermal expansion anisotropy are compared with previously published results for the (6H) polytype and are discussed relative to the structure.  相似文献   

8.
Phase-pure perovskite Pb(Zn x Mg1– x )1/3Nb2/3O3 solid solution (PZ x M1– x N) is obtained for x ≦ 0.7 by heating a milled stoichiometric mixture of PbO, Mg(OH)2, Nb2O5, and 2ZnCO3·3Zn(OH)2·H2O at 1100°C for 1 h. Percent perovskite ( f P) with respect to total crystalline phase decreases with increasing temperature of subsequent heating then increases to 900°C for the mixtures where x ≦ 0.8 and milled for 3 h. For mixtures with x = 0.9 and x = 1, f P decreases monotonically. Curie temperature increases almost linearly with increasing x up to x = 0.7. The maximum dielectric constant at 1 kHz is 2×104 and 1.7×104 for the mixture with x = 0.4 and x = 0.7, respectively. The stabilization mechanism of strained perovskite is discussed.  相似文献   

9.
The effect of additions of 0.22, 0.44, 0.88, and 1.76% A12O3 (Si4+/A13+ ratio of 200:1, 100:1, 50:1, and 25:1) on the transformation of Brazilian quartz to cristobalite was studied at 1500°, 1530°, and 1570°C. The smaller percentages of A12O3 (0.22 and 0.44%) catalyzed the transformation of quartz and the formation of cristobalite considerably. The rates of transformation of quartz with 0.88 and 1.76% A12O3 were slower than with 0.22 or 0.44%, indicating a critical A13+/Si4+ ratio where the catalytic effect was found to be maximum. This appeared to occur at about 0.5% A12O3. The transformation rate of quartz indicated that the reaction was first order. Cristobalite, however, showed two different rates; the initial rapid growth was followed by a slower rate. The point of changeover was found to be at about 30 ± 5% cristobalite. The critical nature of the A13−/Si4+ ratio at about 0.01 (or A12O3/SiO2± 0.005) may have some bearing on the properties of silica refractories with more or less than 0.5% A12O3.  相似文献   

10.
Thallic oxide, "T12O3," has been shown to be a degenerate n -type semiconductor with resistivity varying from 60 to 150 μΩ-cm over the range 4° to 900°K. The carrier concentration was 7 × 1020 cm−3 and is temperature independent. Room-temperature Hall mobility was 105 cm2 V−1 s−1, increasing to 130 cm2 V−1 s−1 below 70°K. Donor states were shown to be native defects, probably oxygen vacancies.  相似文献   

11.
The metastable crystal structure of strontium- and magnesium-substituted LaGaO3 (LSGM) was studied at room and intermediate temperatures using powder X-ray diffractometry and Rietveld refinement analysis. With increased strontium and magnesium content, phase transitions were found to occur from orthorhombic (space group Pbnm ) to rhombohedral (space group R [Threemacr] c ) at the composition La0.825Sr0.175Ga0.825Mg0.175O2.825 and, eventually, to cubic (space group Pm [Threemacr] m ) at the composition La0.8Sr0.2Ga0.8Mg0.2O2.8. At 500°C in air and at constant strontium and magnesium content, a phase transformation from orthorhombic (space group Pbnm ) to cubic (space group Pm [Threemacr] m ) was observed. For the orthorhombic modification, thermal expansion coefficients were determined to be α a ,ortho = 10.81 × 10−6 K−1, α b ,ortho = 9.77 × 10−6 K−1, and α c ,ortho = 9.83 × 10−6 K−1 (25°–400°C), and for the cubic modification to be αcubic= 13.67 × 10−6 K−1 (500°–1000°C).  相似文献   

12.
New Aurivillius phases in the Bi–Ag–Ti–O system were investigated by means of a solid-state reaction and X-ray diffraction. We found that the oxygen partial pressure has a significant influence on the synthesis of the Aurivillius phases. The mixed-layer Aurivillius phase Ag0.5Bi8.5Ti7O27 was observed after firing in an O2 flow, but a single-phase material is difficult to obtain. A single-phase compound of the four-layer Aurivillius phase Ag0.5Bi4.5Ti4O15 was obtained on firing in an oxygen partial pressure of 10 bar (1 × 106 Pa). The dielectric properties (at 1 MHz) of the Ag0.5Bi4.5Ti4O15 compound were as follows: T max=687°C, ɛ r =166 (∼20°C), and tan δ=0.004 (∼20°C).  相似文献   

13.
The thermal decomposition mechanism of synthetic Al(OH)3 (gibbsite) was studied in situ by neutron thermodiffractometry in an ambient atmosphere from room temperature to 600°C with 50°C steps. Gibbsite decomposed to yield AlO·(OH) (boehmite) and then poorly crystallized χ-Al2O3. Rietveld analysis was used to refine the cell parameters' variation of gibbsite and its thermal expansion coefficients were obtained: for the a -axis: 15±1 × 10−6 K−1, for b : 10±2 × 10−6 K−1, and for c : 17±2 × 10−6 K−1.  相似文献   

14.
The rate of formation of NiAl2O4 by reaction between single crystals of NiO and Al2O3 can be described by k = 1.1 × 104 exp (−108,000 ± 5,000/ RT ) cm2/s. In NiO the behavior of D as a function of concentration supports the Lidiard theory of diffusion by impurity-vacancy pairs. A good fit of the theory to the experimental results was obtained by assuming that Al3+ ions diffuse as [AlNi· VNi]'pairs. The diffusion coefficient of pairs, Dp , obeys the equation 6.6 × 10−2 exp (−54,000 ± 3,000/ RT ) cm2/s. The free energy of association for pairs was calculated to range from 6.5 kcal/mol at 1789°C to 9.0 kcal/mol at 1540°C. The interdiffusion coefficients in the spinel showed a constant small increase with increasing concentration of Al3+ dissolved in the spinel.  相似文献   

15.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

16.
Active wustite (FeδO, with a δ value of 0.98) was prepared by keeping normal wustite (δ value of 0.94) in a N2 atmosphere at 300°C for 10 min. This reaction is given by (4δ2–3)Feδ1O→(4δ1–3)Feδ2O + (δ2–δ1)Fe3O4 where δ1= 0.94 and δ2= 0.98. The equation indicates that the normal wustite undergoes eutectoid decomposition into active wustite and stoichiometric magnetite (Fe3O4). Carbon dioxide (1.013 × 105 Pa) was almost completely (100%) decomposed into carbon (zero valence) by the active wustite at the low temperature of 300°C, which was associated with the transformation of the active wustite into the stoichiometric magnetite. The internal pressure of the reaction cell eventually became a vacuum.  相似文献   

17.
The deviation from stoichiometry, δ, in Cr2−δO3 was measured by a tensivolumetric method in the high pO2 range of ≊104 to 104 Pa at 1100°C. The value of δ, or chromium vacancy concentration, was≊9×10−5 mol/mol Cr2O3 in air for Cr2O3 with 99.999% purity. The chemical diffusion coefficient, DT, determined from equilibration data was ≊4.6× cm2·s−1 at 1100°C for pO2= 2.2 ×101 Pa. The self-diffusion coefficient of Cr ions was calculated from and δ and found to be≊1.6×10-17 cm2-s−1, in good agreement with recently measured values.  相似文献   

18.
The dependence of the degree of nonstoichiometry of YBa2Cu307–x (123) on temperature and oxygen pressure has been determined by thermogravimetric analysis (TGA) in the temperature range 400° to 950°C and the oxygen pressure range 10–6 to 1 atm (1 atm = 105 Pa). The nature of the decomposition of 123 in the temperature range 750° to 950°C and the oxygen pressure range 10–6 to 10–2 atm has been determined by TGA and X-ray diffractometry (XRD). As the oxygen pressure decreases, the decomposition of 123 follows the sequence 123→ Y2BaCuo5 (211) + BaCuO2° Cu2O→ 211 ° BaCuO2° BaCu2O2→ 211 ° YBa3Cu2Ox (132) ° BaCu2O2→ 211 ° BaCu2O2°BaO. The incongruent melting temperatures have been determined in the oxygen pressure range 10–6 to 1 atm by differential thermal analysis, and the phases formed on solidification have been identified by XRD. The stability diagram for the composition 123 has been constructed.  相似文献   

19.
Crystals of β-Ca2SiO4 (space group P 121/ n 1) were examined by high-temperature powder X-ray diffractometry to determine the change in unit-cell dimensions with temperature up to 645°C. The temperature dependence of the principal expansion coefficients (αi) found from the matrix algebra analysis was as follows: α1= 20.492 × 10−6+ 16.490 × 10−9 ( T - 25)°C−1, α2= 7.494 × 10−6+ 5.168 × 10−9( T - 25)°C−1, α3=−0.842 × 10−6− 1.497 × 10−9( T - 25)°C−1. The expansion coefficient α1, nearly along [302] was approximately 3 times α2 along the b -axis. Very small contraction (α3) occurred nearly along [     01]. The volume changes upon martensitic transformations of β↔αL' were very small, and the strain accommodation would be almost complete. This is consistent with the thermoelasticity.  相似文献   

20.
Excitation of Tm3+ to 3 H 4 using the 791 nm pump source showed the frequency up-converted blue emission (∼480 nm) due to the Tm3+:1 G 43 H 6 transition in Tm3+/Nd3+ codoped CaO·Al2O3 glasses. Intensity and lifetime changes with rare-earth concentrations suggested the efficient energy transfer of Tm3+:3 H 4→ Nd3+:4 F 5/2 and Nd3+:4 F 3/2→ Tm3+:1 G 4. The latter transfer enabled Tm3+ to reach its 1 G 4 level, and the blue emission became possible through the 1 G 43 H 6 transition. Quantitative analysis with rate equations proved that these two transitions were the most efficient among all the possible energy transfer routes between Tm3+ and Nd3+. Calculated up-conversion efficiency of the Tm3+/Nd3+ combination in CaO·Al2O3 glass was 6.6 × 10−3, and it was ∼4 orders of magnitude larger than those reported for other oxide glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号