首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the results of slow strain rate (ε = 4.4 × 10-5 s-1) tensile tests performed at temperatures between 25 and 700 °C on a high purity CrMoV steel containing various dopants. The materials all had a bainitic microstructure, a hardness of RC28, and a grain size of ASTM 0. Some samples were step cooled prior to tensile testing. Four different compositions were tested: undoped (HP), Mn + P doped (MnP), P doped (P), and Sn doped (Sn) materials. All four materials failed in a low ductility cleavage mode at low temperatures and by a low ductility grain boundary cavitation mode at high temperatures. At intermediate temperatures, around 500 °C, the MnP material showed the highest ductility, the HP and Sn materials showed the lowest, and the P material was intermediate. The beneficial effects of both Mn and P on the creep ductility are rationalized in terms of their control of the sulfur concentration on prior austenite boundaries. In addition, it is suggested that P on the grain boundaries can reduce the cavitation rate by reducing the grain boundary self diffusion rate.  相似文献   

2.
Helium was implanted in type 316 stainless steel, through tritium decay, to levels of 0. 18, 2. 5, 27, 105, and 256 atomic parts per million (appm). Bead-on-sheet welds were then made using the gas tungsten arc (GTA) process. Intergranular cracking occurred in the heat-affected zones (HAZs) of specimens with helium concentrations equal to or greater than 2.5 appm. No such cracking was observed in helium-free control specimens or in specimens containing the lowest helium concentration. In addition to the HAZ cracking, brittle, centerline cracking occurred in the fusion zone of specimens containing 105 and 256 appm helium. Transmission and scanning electron microscopy results indicated that both the HAZ cracking and centerline cracking in the fusion zone resulted from the stress-induced growth and coalescence of cavities initiated at helium bubbles on interfaces. For the HAZ case, the cavity growth rate is modeled and shown to predict the experimentally measured 1-second time lag between peak weld temperature and the onset of cracking.  相似文献   

3.
The effects of internal tritium and helium on the room-temperature tensile properties of a nitrogen-strengthened stainless steel, forged 21Cr-6Ni-9Mn (NITRONIC 40), were investigated by thermally charging tritium into tensile specimens and aging for selected times. The precipitation of helium as bubbles on dislocations greatly increased the yield strength, and as a consequence of dislocation pinning, the deformation mode changed from long-range dislocation motion to deformation twinning. The tensile specimens exhibited a 90 pct decrease in tensile ductility at 1438 appm 3 He, accompanied by a severe change in fracture mode from ductile rupture to a dominantly intergranular fracture mode. Grain-boundary facets showed multiple striations where deformation twins had intersected the boundaries. Twinning began immediately upon yielding, and at small strains, the microstructure evolved into a fully hardened state, normally observed at 40 pct or greater strain in unexposed or hydrogen-charged 21-6-9. Fracture occurs at low strains in tritium-charged and aged 21-6-9, in part, because helium bubble precipitation causes the deformed microstructure to evolve to a heavily deformation-twinned state at a lower strain. Helium bubble precipitation on the grain boundaries may have caused a further loss in ductility. Fracture appeared to nucleate at the intersection of deformation twins with the grain boundary.  相似文献   

4.
The deformation behavior of an extruded Ni-30 (at. pct) Al−20Fe−0.05Zr intermetallic alloy was studied in the temperature range of 300 to 1300 K under initial tensile strain rates varying between about 10−6 and 2×10−3 s−1 and in constant load compression creep between 1073 and 1300 K. The deformation microstructures of the fractured specimens were characterized by transmission electron microscopy (TEM). Three deformation regimes were observed: Region I consisted of an athermal regime of low tensile ductility (less than 0.3 pct) occurring between 400 and 673 K, where the substructure consisted of slip bands in a few grains. Exponential creep was dominant in region II between 673 and 1073 K, where the substructure changed from a mixture of dislocation tangles, loops, and dipoles at 673 K to a microstructure consisting of subgrains and dislocation tangles at 973 K. The tensile ductility was generally about 2.0 to 2.5 pct below 980 K in this region. A significant improvement in tensile ductility was observed in region III, which occurred between 1073 and 1300 K. An analysis of the data suggests that viscous glide creep with a stress exponent,n, of about 3 and high-temperature dislocation climb withn≈4.5 where the two dominant creep mechanisms in this region depending on stress and temperature. The average activation energy for deformation in this region was about 310±30 kJ mol−1 for both processes. In this case, a transition from viscous glide creep to dislocation climb occurred when σ/E<1.7×10−4, where σ is the applied stress andE is the Young’s modulus.  相似文献   

5.
Warm-temperature tensile ductility in Al−Mg alloys   总被引:1,自引:0,他引:1  
Several binary and ternary Al alloys containing from 2.8 to 5.5 wt pct Mg were tested in tension at elevated temperatures (200°C to 500°C) over a range of strain rates (10−4 to 2.0 s−1). Tensile ductilities of up to 325 pct were obtained in binary Al−Mg alloys with coarse grains deformed in the solute-drag creep regime. Under test conditions in which solute-drag creep controls deformation, Mg in concentrations from 2.8 to 5.5 wt pct neither affects tensile ductility nor influences strain-rate sensitivity or flow stress significantly. Strength is shown to increase with increasing Mg concentration, however, in the power-law-break down regime. The solute-drag creep process, which leads to superplastic-like elongations, is shown to have no observable grain-size dependence in a binary Al−Mg material. Ternary alloying additions of Mn and Zr are shown to decrease the strain-rate sensitivity during solute-drag creep, negatively influencing ductility. An important cause of reduced ductility in the ternary alloys during creep deformation is found to be a transition from necking-controlled failure in the binary alloys to cavitation-controlled failure in the ternary alloys investigated. An increase in ternary element concentration, which can increase the relative volume percentage of proeutectic products, increases cavitation.  相似文献   

6.
Warm-temperature tensile ductility in Al-Mg alloys   总被引:2,自引:0,他引:2  
Several binary and ternary Al alloys containing from 2.8 to 5.5 wt pct Mg were tested in tension at elevated temperatures (200 °C to 500 °C) over a range of strain rates (10−4 to 2.0 s−1). Tensile ductilies of up to 325 pct were obtained in binary Al-Mg alloys with coarse grains deformed in the solute-drag creep regime. Under test conditions in which solute-drag creep controls deformation, Mg in concentrations from 2.8 to 5.5 wt pct neither affects tensile ductility nor influences strain-rate sensitivity or flow stress significantly. Strength is shown to increase with increasing Mg concentration, however, in the power-law-breakdown regime. The solute-drag creep process, which leads to superplastic-like elongations, is shown to have no observable grain-size dependence in a binary Al-Mg material. Ternary alloying additions of Mn and Zr are shown to decrease the strain-rate sensitivity during solute-drag creep, negatively influencing ductility. An important cause of reduced ductility in the ternary alloys during creep deformation is found to be a transition from necking-controlled failure in the binary alloys to cavitation-controlled failure in the ternary alloys investigated. An increase in ternary element concentration, which can increase the relative volume percentage of proeutectic products, increases cavitation.  相似文献   

7.
The effect of cooling rate on the microstructure, mechanical behavior, corrosion resistance, and subsequent age hardenability of U-6 wt pct Nb is described and discussed. Cooling rates in excess of 20 Ks-1 cause the parent γ-phase to transform martensitically to a niobium supersaturated variant of the α-phase. This martensitic phase exhibits low hardness and strength, high ductility, good corrosion resistance, and substantial age hardenability. As cooling rate decreases from 10 Ks-1 to 0.2 Ks-1, fine scale microstructural changes (consistent with spinodal decomposition) occur to an increasing extent. These changes produce large increases in hardness and strength and large decreases in ductility, slight decreases in corrosion resistance, and slight changes in age hardenability. At cooling rates less than 0.2 Ks-1 the parent phase undergoes cellular decomposition to a coarse two-phase lamellar microstructure. This lamellar microstructure exhibits intermediate strength and ductility, substantially reduced corrosion resistance, and no age hardenability. An analysis of the cooling rates at the centers of water quenched plates indicates that fully martensitic microstructures can be obtained in plates as thick as 50 mm.  相似文献   

8.
Fusion Reactors will require specially engineered structural materials, which will simultaneously satisfy the harsh conditions such as high thermo mechanical stresses, high heat loads and severe radiation damage without compromising on safety considerations. The fundamental differences between fusion and other nuclear reactors arise due to the 14MeV neutronics of structural materials. There exists considerable uncertainty in the nuclear data at such energies because there aren’t any strong enough sources for such neutrons except fusion reactors themselves! We thus encounter a problem of iterative nature in which we must try several experiments with the available materials in the near term. The development of such structural materials is thus going to require the experimental data of the kind that may be generated on reactors like ITER, high-performance modeling and a penetrating metallurgical insight to overcome technological challenges in terms of achieving required properties such as low activation by controlling the impurities, good thermo-mechanical properties by microstructure engineering, good chemical compatibility and high radiation resistance. These materials need to withstand a neutron wall load of the order of 2–3 MW/m2, which can lead up to 30 dpa of radiation damage and 300 appm helium production per full power year in DEMO like reactors. Such conditions lead to unprecedented events related to the failure of materials due to irradiation creep, Ductile-Brittle Transition Temperature (DBTT) shift and helium embrittlement. The development of fusion materials program is oriented towards fulfilling the requirements of Test Blanket Modules, various prototype activities of SST-2 and DEMO reactor. The materials identified for first wall and blanket modules for Indian DEMO are LAFMS and ODS steels. The development program plan for these materials include (i) Manufacturing of LAFMS steel through VIM/VAR methods by controlling the impurities such as S, P and Si. (ii) ODS steel development with nano-size Y2O3 dispersoids in ferritic martensitic matrix by powder metallurgy route. The advanced structural materials like SiCf /SiC composites and SiCf /n-SiC are planned under National Fusion Program projects for indigenous development. An overview of the planned program in this direction will be presented.  相似文献   

9.
The influence of chemical composition on the microstructure of the γ-titanium aluminide alloy Ti-48Al-2W-0.5Si (at. pct) and the accompanying tensile, low-cycle fatigue, and creep properties has been evaluated. The study showed that small variations in chemical composition and casting procedures resulted in considerable variations in the microstructure, yielding vastly different mechanical properties. Low contents of aluminum and tungsten led to a coarse-grained lamellar (γ/α 2) microstructure with high creep resistance. A composition close to the nominal one produced a duplex (γ+γ/α 2) structure with favorable strength, ductility, and low-cycle fatigue properties. By controlling the solidification and cooling rates at casting, a pseudoduplex (PS-DP) microstructure with a unique combination of high strength and high fatigue and creep resistance can be obtained. These unique properties can be explained by the diffuse boundaries between the relatively small γ grains and the neighboring lamellar colonies, combined with semicoherent interfaces between the γ and α 2 phases. At tensile and low-cycle fatigue loading, these boundaries act like high-angle boundaries, producing a virtually fine-grained material promoting strength, whereas at creep loading, grain-boundary sliding is hindered in the semicoherent interfaces leading to high creep resistance.  相似文献   

10.
The growth of helium bubbles in 316L stainless steel in which helium was generated from the tritium decay is examined using image analysis of transmission electron microscopy (TEM) micrographs. The influence of temperature (1073, 1223, and 1373 K), annealing time (0.083 to 1000 hours), cold deformation (92 pct) and helium content (35 and 3.7 appm) on the bubble’s density, volume fraction, and mean size is investigated. For the chosen conditions of helium precipitation and growth (high temperature and large annealing time), the experimental results suggest that the observed increase in the size of the large bubbles present after a 0.083-hour aging at 1373 K proceedsvia a facet limited migration and coalescence mechanism. Formerly with CNRS, is Postdoctor, Department PuA, CEA-DAM, Bruyères Le Chatel, France.  相似文献   

11.
The weldability and weld metal microstructure of Cabot Alloy 214 have been investigated with a variety of experimental and analytical techniques. These include Varestraint hot crack testing, hot ductility testing, pulsed Nd:YAG laser welding, scanning and analytical electron microscopy, electron microprobe analysis, and X-ray diffraction. A heat of Alloy 214 containing intentionally alloyed B (0.003 wt pct) and Zr (0.07 wt pct) was much more sensitive to both fusion zone hot cracking as quantified by the Varestraint test and to simulated heat-affected-zone (HAZ) cracking as quantified by hot ductility testing than a heat of Alloy 214 containing no intentionally added B (0.0002 wt pct) or Zr (0.02 wt pct). Scanning electron microscopy of the high B and Zr alloy showed the presence of dendritically-shaped, Zr-rich constituents in interdendritic regions in the gas-tungsten-arc (GTA) welds. Electron microprobe analysis of these welds revealed a segregation pattern of Cr, Al, Mn, and Zr enrichment in interdendritic regions and Ni and Fe enrichment in dendrite core regions. Analytical electron microscopy revealed the presence of ZrX (X = B, C, N, O), M23C6, andγ′ in the fusion zone of GTA weld specimens,γ′ was also found in the as-received base metal and in the GTA weld HAZ. X-ray diffraction analysis of extractions from the high B and Zr GTA weld metal also indicated the presence of a ZrX-type constituent. The results of this study are in qualitative agreement with earlier work performed on alloys such as NIMONIC 90 and INCONEL 718 relative to the detrimental effect of B and Zr additions on fusion zone and HAZ hot cracking susceptibility. Formerly with Sandia National Laboratories, Albuquerque, NM  相似文献   

12.
The effect of a ductile γ′-Ni3Al phase on the room-temperature ductility, temperature-dependent yield strength, and creep resistance of β-NiAl was investigated. Room-temperature tensile ductility of up to 9 pct was observed in directionally solidified β/γ′ Ni-30 at. pct Al alloys, whereas the ductility of directionally solidified (DS), single-phase [001] β-NiAl was negligible. The enhancement in ductility was attributed to a combination of slip transfer from the ductile γ′ to the brittle β phase and extrinsic toughening mechanisms such as crack blunting, deflection, and bridging. As in single-phase Ni3Al, the temperature-dependent yield strength of these two-phase alloys increased with temperature with a peak at approximately 850 K. The creep strength of the β/γ′ alloys in the temperature range 1000 to 1200 K was found to be comparable to that of monolithic β-NiAl. A creep strengthening phase needs to be incorporated in the β/γ′ microstructure to enhance the elevated temperature mechanical properties.  相似文献   

13.
Nbss/Nb3Al in-situ composite with the nominal composition of Nb-16 mol pct Al-1 mol pct B, consisting of bcc niobium solid solution (Nbss) and A15 ordered Nb3Al, was synthesized by arc melting, homogenization annealing, and isothermal forging, and their superplastic deformation behavior was investigated by tensile tests and microstructure observations. Maximum superplastic elongation over 750 pct was obtained at 1573 K and at a strain rate of 1.6 × 10−4 s−1 for as-forged specimens. Phase transformation from Nbss to Nb3Al was observed to occur during superplastic deformation. Dynamic phase transformation during superplastic deformation progresses more quickly than static phase transformation during annealing without applied stress. Dynamic phase transformation is accompanied by phase-boundary migration, which operates as an accommodation process of grain-boundary sliding. Dislocation creep dominates deformation and grain-boundary sliding is inhibited at a high strain rate, while grain-boundary sliding and cavity formation are promoted at a low strain rate because of insufficient accommodation of grain-boundary sliding arising from sluggish dynamic phase transformation. It is concluded that there exists an optimum strain rate that guarantees the grain-boundary sliding and the rapid dynamic phase transformation to achieve maximum superplastic elongation.  相似文献   

14.
Modeling creep and fatigue of copper alloys   总被引:1,自引:0,他引:1  
This article reviews expressions to quantify the thermal creep and fatigue lifetime for four copper alloys: Cu-Ag-P, Cu-Cr-Zr, Cu-Ni-Be, and Cu-Al2O3. These property models are needed to simulate the mechanical behavior of structures with copper components, which are subjected to high heat-flux and fatigue loading conditions, such as molds for the continuous casting of steel and the first wall in a fusion reactor. Then, measurements of four-point bending fatigue tests were conducted on two-layered specimens of copper alloy and stainless steel, and thermal ratchetting behavior was observed at 250 °C. The test specimens were modeled with a two-dimensional elastic-plastic-creep finite-element model using the ABAQUS software. To match the measurements, a primary thermal-creep law was developed for Cu-0.28 pct Al2O3 for stress levels up to 500 MPa and strain rates from 10−8 to 10−2 s−1. Specifically, (s−1)=1.43×1010 exp (−197,000/8.31 T(K)) (σ(MPa))2.5 (t(s))−0.9.  相似文献   

15.
The creep properties of W-25 pct Re were measured in low-pressure oxygen to simulate its interaction with oxygen derived from the decomposition of oxides at high temperatures. The results are compared with the creep properties of the alloy in a vacuum of 10−7 torr. Between 1650° and 2000°C and stresses of 1000 and 2000 psi, the creep rates were lower in 10−5 torr O2 than in vacuum by factors as high as 250; however, rupture strains were only 2 to 7 pct in the O2 environment. Specimens exposed to oxygen before creep testing in vacuum were also stronger than specimens tested in vacuum. The oxygen content of specimens tested in oxygen was generally lower than in the as-received material. The lower creep rates of W-25 pct Re in oxygen are attributed to the presence of a surface layer of σ phase. This reaction layer results from the formation of volatile tungsten oxides at a higher rate than rhenium oxides. Formerly with the Oak Ridge National Laboratory  相似文献   

16.
The tensile behavior of the oxide dispersion strengthened iron-base alloy MA 956 was investigated as a function of strain-rate ranging from 3.3×10−2 to 8.3×10−8 s−1 at 1366 K. All tests were conducted in the longitudinal direction on specimens machined from bar stock. Because of the microstructure of this alloy, all specimens were either single crystals or bicrystals with the boundary parallel to the gage length. Testing revealed that the strength was rather insensitive to strain-rate, the tensile ductility decreased with decreasing strain-rate, and for strain-rates ≤8.3×10−5 s−1, the alloy fractured in brittle manner. Evidence of transgranular cracking perpendicular to the applied stress was observed at all strain-rates; failure at strain-rates ≤8.3×10−5 s−1 was due to cracks which grow by the joining together of cavities ahead of the running crack. This alloy appears to possess a critical stress intensity factor for rapid crack growth.  相似文献   

17.
Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature. Formerly Assistant Professor, Indian Institute of Technology, Madras, is now Visiting Scientist (AFWAL Materials Laboratory), Universal Energy Systems Inc., Dayton, OH 45432.  相似文献   

18.
The ductility and creep of bulk ultra-fine-grained (UFG) 5083 Al (grain size ∼440 nm) processed by gas atomization, cryomilling, and consolidation were studied in the temperature range 523 to 648 K. Also, the creep microstructure developed in the alloy was examined by means of transmission electron microscopy (TEM). The ductility as a function of strain rate exhibits a maximum that shifts to higher strain rates with increasing temperature. An analysis of the experimental data indicates that the true stress exponent is about 2, and the true activation energy is close to that anticipated for boundary diffusion in 5083 Al. These creep characteristics along with the ductility behavior of 5083 Al are a reflection of its creep behavior as a superplastic alloy and not as a solid-solution alloy. In addition, the observation of elongations of more than 300 pct at strain rates higher than 0.1 s−1 is indicative of the occurrence of high-strain-rate (HSR) superplasticity. Microstructural evidence for the occurrence of HSR superplasticity includes the retention of equiaxed grains after deformation, the observation of features associated with the occurrence of grain boundary sliding, and the formation of cavity stringers. Grain size stability during the superplastic deformation of the alloy is attributed to the presence of dispersion particles that are introduced during gas spraying and cryomilling. These particles also serve as obstacles for dislocation motion, which may account for the threshold stress estimated from the creep data of the alloy.  相似文献   

19.
Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.  相似文献   

20.
Investigations carried out on the hot tensile properties of Inconel alloy X-750 at 700 °C in air and vacuum at different strain rates, in the range of 1 × 10−7 to 1.2 × 10−6 s−1, have shown that testing in air had a weakening effect on properties. Creep ductility in vacuum (p 02 = 2.7 × 10−5 Pa) did not change appreciably with strain rate, but ductility varied markedly when tested in the air. Further, the ductility minimum occurred at 625 °C in air whereas considerable improvements in the creep ductilities were observed at 575 °C and 625 °C in the vacuum. The results indicated that the environmental interaction during testing enhanced the rate of cavitation damage causing premature failure in the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号