首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
林晨  张曜  于娟  冯帆  张忠孝 《洁净煤技术》2020,26(3):114-119
随着大气污染形势日趋严峻,控制NOx排放的相关环保标准也日益严格。选择性非催化还原技术(SNCR)可以有效降低NOx排放,但受限于反应温度窗口狭窄,在流化床中的脱硝效率有限。研究表明H2、碳氢化合物和CO作为添加剂时,可以拓宽SNCR的反应温度窗口,促使低温下的脱硝反应得以进行;但在循环流化床热态试验系统上,鲜有使用工业副产品如煤气化合成气作为添加剂,分析H2、碳氢化合物和CO共存时对SNCR产生的影响效果。为了探究合成气与氨构成的混合还原剂对脱硝反应的影响,在循环流化床热态试验系统上,对比了合成气与氨水构成的混合还原剂和氨水的脱硝效果,同时考虑了反应温度、NSR、添加剂浓度、添加剂喷射位置等影响因素。结果表明:在840℃低温下,使用氨还原剂的SNCR反应已经失效,还会增加NOx排放量。混合还原剂可大幅提高低温区的脱硝效率,添加合成气能促使SNCR反应在此较低温度下进行。840℃时,脱硝效率从0提升至44%~62%。在氨氮摩尔比较低的情况下,如NSR=0.5或1.0、合成气为120×10-6时,合成气喷射位置的不同对NOx排放量影响不大;但当氨过量时(NSR1.0),将合成气喷射至分离器前温度较低的烟气管道中,能增强氨的选择性,进一步降低NOx排放量。当NSR=1.5时,NOx的排放量达到了最低101~110 mg/m3,相比炉膛出口处喷射降低了约60 mg/m3。独立喷射氨水与合成气使其在炉内混合的方式,比氨气与合成气预混后喷射方式好,NOx排放量会降低60 mg/m3左右。合成气添加剂与氨存在很强的相互协同、相互促进作用,合成气可以提高氨还原剂的选择性。  相似文献   

2.
汪澜 《水泥》2021,(3):42
燃煤在水泥窑炉中的燃烧产生有大量的NOx,排放烟气中NOx浓度可高达1?950 mg/m3。低氮燃烧、分级燃烧等过程减排技术,利用CO在高温条件下对NOx还原,可部分削减NOx,但过重的还原气氛对窑炉正常运行会产生不利的影响。SNCR技术,利用氨基还原剂在适宜温度条件下还原NOx,效率可达60%;进一步增加还原剂用量、提高脱硝效率,则会增加氨逃逸,导致大气环境氨污染。SCR技术,在较低的温度条件下,利用氨基还原剂脱硝,可以实现窑炉烟气NOx超低排放,基本避免氨逃逸。前述多项技术的耦合及各项技术优势的发挥,是水泥窑炉烟气脱硝的最佳技术路径组合。  相似文献   

3.
T水泥厂100%燃烧无烟煤,自脱硝效果差,NOx初始排放浓度偏高,分解炉出口CO浓度较高,SNCR脱硝效率低。采取在分解炉炉膛的不同高度安装新型氨水喷射器,将氨水雾滴喷入烟气,加速氨水与NOx的混合;建立智能控制模型,动态调整烧成系统不同温度区间的喷氨量,降低喷氨总量;测试不同层喷枪脱硝效果,确定C6进出口为喷枪脱硝最佳喷射点等措施进行了改造,改造后,T水泥厂高效SNCR脱硝效率可达75%。对比了燃烧无烟煤和烟煤的脱硝效率,若将燃烧无烟煤调整为燃烧烟煤,则T水泥厂脱硝效率可进一步提升。  相似文献   

4.
贵州黔西汇瑞水泥额定产量为2 800t/d,采用单系列五级旋风筒预热器系统,主要设备参数为:分解炉Φ6m×35m,回转窑Φ4.3m×60m,三次风管Ф2.6 m,第四代篦冷机,四通道燃烧器,无脱氮风管。采用氨水SNCR脱硝技术,氨水浓度为20%,喷枪一共6支(单层),最开始的喷点设置在分解炉上,整个SNCR系统为定流量模式,采用PID调节模式维持主管路、压缩空气管路的压力和设定流量。在第一次调试过程中,发现最高的脱硝效率仅能达到60.6%,NOx的最低排放值335mg/m3,最高脱硝效率时氨水的喷入量为0.95m3/h,仅能达到环保要求,但是脱硝效率不高,因此对该脱硝系统进行第二次改造。改造后,最高脱硝效率为79.7%,NOx的最低排放值为219mg/m3,最高脱硝效率时氨水的喷入量为1.2m3/h,最大氨逃逸浓度<10ppm,达到了环保要求并通过验收。  相似文献   

5.
以尿素为还原剂,采用选择性非催化还原(SNCR)技术对5000 t/d水泥熟料生产线的DD型分解炉内NO_x的脱除进行了数值模拟。其中,还原剂尿素喷射速度是影响分解炉内脱销效果的最重要的因素之一。本文根据实际工况参数数值模拟对比了尿素不同喷射速度下分解炉内的NO_x的浓度分布,得出了最佳的喷射速度区间,对于该类型分解炉脱销系统参数的优化具有良好的指导作用。  相似文献   

6.
目前水泥窑传统脱硝管控技术SNCR在氮氧化物(NOx) 200mg/Nm3以上有很好的经济适用性,若降至100mg/Nm3以下,氨水消耗量和氨逃逸显著上升。因此,为减少氨水用量,进一步提高SNCR脱硝效率,我公司某12?000t/d熟料生产线积极采取分级燃烧、脱硝喷射系统改造、氨水喷枪分布测试,并优化窑和分解炉燃烧制度,努力降低氨水消耗。  相似文献   

7.
探讨了水泥窑炉燃烧过程中NOx的生成机理的生成机理,介绍了第二代分解炉梯度燃烧自脱硝的技术及实验室竖式电炉模拟分解炉内气体反应的试验技术及实验室竖式电炉模拟分解炉内气体反应的试验,研究了不同炉膛温度、停留时间、还原剂浓度下CO与NO的反应历程的反应历程。在湖北某水泥生产线技改项目中的工程应用表明,梯度燃烧自脱硝分解炉可实现脱硝效率6060%,出分解炉烟气NOx浓度400400mg/m3(标),月平均氨水用量下降6060%以上以上,每年可节约氨水使用成本200万元以上万元以上。  相似文献   

8.
采用CFD模拟方法预测了300 MW循环流化床机组SNCR脱硝过程中的还原剂液滴蒸发、烟气混合和反应特性。结果表明烟气在旋风分离器内贴壁旋转流动并形成外旋流为准自由涡和内旋流为刚性涡的双涡结构,使液滴与烟气接触约0.01 s后开始恒温蒸发,并强化了烟气与气态还原剂的混合效果。氨水为还原剂时,NH3主要分布于旋风分离器锥体上方;尿素为还原剂时,蒸发后快速分解的HNCO消耗速率高于NH3,其中NH3浓度分布与氨水为还原剂相似,相同烟气温度和氨氮摩尔比时氨水和尿素溶液对应脱硝效率分别约为79.5%和76.5%。温度对脱硝效率的影响表现为先上升后下降趋势,当温度由1023 K提高至1173 K时NH3与NO反应速率提高,脱硝效率由19.7%提高至81.0%;而当温度由1173 K进一步提高至1323 K时,NH3由于自身氧化速率显著提高而导致脱硝效率降低至17.4%。脱硝效率随氨氮摩尔比(NSR)增大而升高,但还原剂利用率的降低致使氨逃逸率增大,综合考虑本台CFB锅炉SNCR脱硝效率和...  相似文献   

9.
对某3?200 t/d水泥生产线的氮氧化物和氨逃逸情况进行了实际测试,并计算了C1出口和窑尾烟囱的理论氨逃逸值。结果表明,氨逃逸理论计算值与实测值存在较大差异,理论计算值高于实测值,氨的氧化率和粉尘浓度、水分等是实测值与理论值存在差异的主要原因,氨水用量和分解炉出口NOx浓度是影响氨逃逸理论计算结果的主要因素。  相似文献   

10.
采用k-ε湍流流动模型,对2500 t/d熟料生产线的TDF炉燃烧过程、喷氨方案及不同方案的脱硝反应进行了数值模拟。结果表明,煤粉燃烧的流场分布与实际基本吻合,分解炉内悬浮态的钙粉颗粒物有利于强化氨水的分散,氨水流量越大,喷射点可以保证的停留时间越长,60°的喷射角,都有利于NOx的脱除。用模拟出来的参数指导工程设计,各项指标优于设计指标,虽然不能实施全方位的比对,但是,对将数值模拟技术应用于水泥脱硝工程设计进行了有益探索和经验总结。  相似文献   

11.
现阶段,减少NO_x的排放量已成为水泥行业可持续发展的必要条件之一。分别从喷氨位置、喷氨角度、氨水用量三因素探讨水泥窑烟气SNCR脱硝技术喷射系统的关键问题。结果显示,除喷氨角度外,喷氨位置及氨水用量对分解炉出口截面NO质量浓度及脱硝效率影响较大,在进行水泥窑烟气SNCR脱硝时,喷氨位置选定在上部柱体底部,且需喷射较为多量的氨水。  相似文献   

12.
针对脱硝系统氨逃逸量大造成除尘器无法投运的问题,对涡流混合式脱硝系统进行喷氨优化试验。试验发现,脱硝出口NOx浓度在烟道宽度方向分布不均。通过调整喷氨支管手动蝶阀降低了脱硝出口NOx浓度分布的不均匀度。满负荷下,烟道A侧出口不均匀度由48.3%降低到19.4%; B侧出口不均匀度由62.7%降低到21.8%。经过调整,NOx分布不均匀度显著下降。两侧烟气流量在高低负荷下不存在明显的偏差,流场分布也较为均匀。电厂采用新型涡流静态混合器,有助于解决脱硝出口NOx浓度沿烟道深度方向分布不均的问题。利用SIS数据分析发现脱硝出口NOx浓度CEMS测点不准确,导致喷氨自动投运时喷氨量过大,氨逃逸量变大。CEMS测点取样不具代表性,建议采用网格法取样,并对CEMS测点进行定期标定。喷氨控制策略中,喷氨量跟随性差,导致喷氨量与脱硝入口NOx浓度变化存在一定的延迟,建议优化喷氨控制逻辑。净烟气NOx排放浓度值不宜设置得过低,设定值越低,氨逃逸量越大。综合环保性和经济性,推荐净烟气NOx排放浓度控制在25~35 mg/m3。经过喷氨优化后,整体的氨逃逸量控制在3×10-6以下。  相似文献   

13.
王丽英 《山东化工》2022,(6):174-177
燃煤电厂烟气脱硝系统因SCR装置喷氨分布不均匀,致使出口 NOx浓度偏差大、喷氨过量、局部氨逃逸浓度过高等现象,严重影响机组的安全性和经济性.本文以600 MW机组为例,通过优化调整喷氨格栅开度,使SCR装置出口 NOx浓度分布的相对标准偏差平均均匀下降37%,脱硝效率平均提高12.7%,氨逃逸浓度平均降低0.23 m...  相似文献   

14.
针对1180t/hCFB锅炉采用华能清能院选择性非催化还原(SNCR)脱硝专利技术,结合CFB锅炉炉内低NOx燃烧控制技术,NOx排放量由改造前的300mg/m3可有效控制在50mg/m3以下,脱硝效率达80%以上,对应氨氮比低于1.5,氨逃逸值可控制在1.5mg/m3以下,系统自动化投入率100%。通过对SNCR系统运行参数优化,得到较佳尿素给入浓度及合理的氨氮比控制参数,提高了脱硝系统的运行经济性、稳定性。该项技术首次成功应用于330MW等级CFB锅炉,为中国大型CFB锅炉实现高环保标准的氮氧化物减排探明了方向。  相似文献   

15.
东平中联美景水泥有限公司5 500t/d生产线,由天津水泥工业设计研究院设计,窑尾采用双系列五级预热器和TTF分解炉,回转窑采用Φ5m×60m两档短窑,熟料冷却采用第四代篦冷机,生料终粉磨采用单台CLF200/160辊压机。2012年9月19~22日顺利实现了72h达产达标验收。该系统于2013年12月完成了脱硝工程项目,总投资142万元,由安徽海螺川崎工程有限公司进行施工建设。采用SNCR脱硝法,在分解炉内温度为850~1 050℃的区域喷入浓度为20%的氨水,将烟气中的NOx还原为无害的氮气和水。脱硝系统投入使用后,经过16h连续测试,脱硝前NOx折算(10%O2,下同)平均值为813mg/Nm3,脱硝后NOx折算平均值为319mg/Nm3,平均脱硝效率为61%,吨熟料氨水耗量小于3.8kg/t.cl,氨逃逸率小于10mg/kg。经近2年多的运转,脱硝运行良好,废气中NOx浓度达到了环保排放要求。  相似文献   

16.
<正>SNCR脱硝技术是用氨水、尿素溶液等还原剂喷入分解炉内850~1 100℃的区域与烟气中NOx进行选择性非催化还原反应,将NOx转化成无污染的N2和H2O,从而达到降低NOx排放的目的。理论上,在分解炉内喷入液态还原剂后,还原剂中水分的蒸发会吸收一定的热量,而还原剂中氨基与烟气中NOx进行氧化还原反应会放出一定的热量,同时还原剂带入的水分和反应生成的气体(包括N2、H2O等)导致炉内烟气量  相似文献   

17.
<正>"十二五"期间,大部分水泥熟料生产线均配置了SNCR脱硝系统,其基本原理是在分解炉及下游风管合适的温度区间(850~950℃)喷入还原剂(多为氨水),还原剂中的氨基与烟气中氮氧化物(NOx)反应,生成H2O和N2,达到去除烟气中NOx的目的。SNCR脱硝技术核心主要有两个方面:1选择合适的温度窗口,保证反应的温度;2选择合适的喷射方案,合理选取氨水喷射角度、覆盖面、雾化效果,使  相似文献   

18.
利用氨作为还原剂的选择性非催化还原(SNCR)脱硝技术已得到广泛应用,但其脱硝效率一直比较低,难以满足最新的环保排放要求。通过向烟气中喷射由氨与还原性气体组成的复合还原剂来脱除NOx,同时运用加入复合还原剂的SNCR基元反应动力学模型对试验过程进行了模拟,结合试验与模拟结果对比不同组分的复合还原剂参与的SNCR脱硝反应特性。结果表明:复合还原剂可有效提高脱硝效率,降低反应的条件温度,拓宽反应的温度窗口。在氨与不同还原性气体组成的复合还原剂中,氨-H2组合可使最佳脱硝温度从920℃下降至750℃;氨-CH4组合与氨-CO组合的效果相近,最佳脱硝温度从920℃下降至840℃左右,但CH4的脱硝温度窗口比CO宽,且相同温度下CH4的最佳脱硝效率比CO最多高出约9%。复合还原剂的最高脱硝效率可达67%左右,采用该项技术可达到最新的NOx排放标准。  相似文献   

19.
随着环保压力不断提高,流化床锅炉需进行深度脱硝改造以实现超低排放,但目前SCR改造在流化床锅炉上的应用研究较少。某厂320 MW流化床机组改造增加了SCR脱硝系统,基于该工程改造项目,笔者使用网格法对烟气场温度、烟气成分等参数进行测定,进行了改造前后的锅炉性能试验,研究了改造后SCR的脱硝性能及其影响因素,并测试锅炉效率。结果表明,不同负荷下,SCR入口平均温度在268.11~309.53℃,基本满足拓展的SCR反应温度窗口(260~420℃)。机组满负荷320 MW下,实测反应器脱硝效率为72.48%,对应的氨逃逸浓度为0.7 mg/Nm3。40%~100%负荷下,NOx排放均低于25 mg/Nm3,氨逃逸浓度不大于1 mg/Nm3。由于烟气温度水平较煤粉炉低,因此本试验中SCR反应器的脱硝效率低于应用于煤粉炉的SCR反应器。40%~100%负荷下的尿素耗量均低于同等级的煤粉锅炉,其中满负荷下的尿素耗量为279.09 kg/h。在相同排放数值下尿素耗量降低50%以上,节能降耗效果显著。排放结果与尿素耗量统计结果表明,SNCR与SCR耦合良好,应用于CFB锅炉具有较大优势。SCR出口处NOx分布并不均匀,在烟道水平截面上呈NOx浓度右侧高、左侧低的趋势,与SCR入口温度分布一致,温度是影响脱硝效率和NOx分布的主要因素。改造后平均锅炉效率为90.07%,与改造前锅炉效率持平,表明SCR改造对锅炉效率影响较小。锅炉90%以上热损失由排烟和物理未完全燃烧热损失造成,控制排烟热损失q2和物理未完全燃烧热损失q4是锅炉热效率提升的关键。  相似文献   

20.
为提高SCR脱硝工艺脱除水泥窑尾系统烟气中硝的效率,提出水泥窑尾系统烟气SCR脱硝工艺优化方法。根据水泥窑尾系统烟气SCR脱硝工艺脱硝过程中,SCR系统出入口NOx浓度变化,判断水泥窑尾系统烟气SCR脱硝工艺受供氨量、烟气温度、烟气流速、催化剂性能的影响。基于此,针对SCR脱硝工艺中SCR系统的反应器结构导流板和喷氨格栅两部分进行优化。应用试验结果:此次研究方法优化后的SCR脱硝工艺平均供氨流量在90~100Nm3/h之间,SCR反应器入口NOx浓度在900~800mg/Nm3之间,SCR出口NOx浓度在50~40mg/Nm3之间,经脱硝效率公式计算,优化后的SCR脱硝工艺脱硝效率较未优化的SCR脱硝工艺脱硝效率最大值提高3.75%~5.56%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号