首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曹树刚  张遵国  李毅  郭平  刘延保 《煤炭学报》2013,38(10):1792-1799
采用自主研制的煤体高压吸附-解吸变形试验系统,进行了突出危险煤在不同瓦斯压力条件下的吸附-解吸变形全过程试验,探讨了突出危险煤吸附瓦斯产生膨胀变形、解吸瓦斯产生收缩变形这一特有的力学行为。研究结果表明,突出危险煤在不同瓦斯压力下随时间的变形曲线具有相同的演化规律,即先后经历抽真空收缩变形、充气压缩变形、吸附膨胀变形、卸压膨胀变形、卸压后弹性恢复变形和解吸收缩变形等6个阶段;吸附膨胀变形和解吸收缩变形过程中,煤样的应变变化率绝对值均随时间逐渐减小,直至一个相对稳定值,其变形规律服从朗格缪尔方程;煤样的吸附膨胀变形和解吸收缩变形均呈各向异性,垂直于层理方向和平行于层理方向的应变整体变化趋势呈现一致性,但由于煤体内部裂隙分布差异,使垂直层理方向的应变明显大于平行层理方向的应变;煤样吸附膨胀变形值与瓦斯压力关系对二次函数和朗格缪尔方程均具有较好的拟合效果,煤样解吸收缩变形值与原始瓦斯压力呈很好的幂函数关系和二次函数关系;煤样解吸瓦斯后存在一定的残余变形值。  相似文献   

2.
煤体吸附-解吸瓦斯变形特征实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在煤层瓦斯抽放过程中,煤体瓦斯处于吸附-解吸状态,煤体发生膨胀和收缩。利用自主设计的煤体变形实验装置,分析了杜儿坪煤矿原煤在不同方式下吸附-解吸全过程中变形特征。实验结果表明:煤体变形量随着瓦斯压力的增加而增大,垂直层理方向变形量大于平行层理方向变形量;煤体在一次加压吸附实验中分为变形下降阶段、变形快速上升阶段和变形平稳上升至稳定阶段3个阶段;等梯度加压吸附-降压解吸过程中,0→0.5 MPa阶段变形量最大;等梯度加压吸附煤体变形量大于一次加到目标压力值的吸附煤体变形量,且等梯度解吸煤体残余变形量较大;煤体吸附-解吸变形可分为充气下降阶段、吸附快速上升阶段、吸附变形平稳上升至平稳阶段、解吸变形快速下降阶段和解吸平稳下降至稳定阶段。  相似文献   

3.
含水煤岩变形破坏过程中瓦斯运移规律的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
配合自制煤岩三轴流固耦合夹持装置,采用实验方法对煤岩变形破裂过程中瓦斯运移规律进行研究。实验结果表明:煤岩破裂前后,瓦斯解吸量、解吸速率以及渗透率的差异较大,在弹性压密到强化阶段,瓦斯解吸规律基本遵循Langmuir等温吸附规律。在煤岩破裂阶段,瓦斯解吸量和解吸速率都急剧增大,瓦斯渗透率的变化表现为少许滞后于应变的特点;在瓦斯压力较低的情况下,煤岩渗透性能受含水饱和度的影响显著,破裂后气测渗透率值比压密阶段高近6倍,含水饱和度增大后,煤岩破裂前后气测渗透率变化规律大致相同,虽然增大了煤岩孔隙压力,但煤岩变形破裂全过程中测定的气测渗透率反而降低。  相似文献   

4.
祝捷  张敏  姜耀东  唐俊 《煤炭学报》2015,40(5):1081-1086
无商业开采价值的煤层被认为是理想的CO2储存场所,煤吸附解吸CO2的变形特征是煤中CO2封存的重要问题。利用煤体吸附-解吸变形试验系统,在预定压力的CO2气体环境下,对取自赵各庄煤矿9号煤层煤样的轴向应变和径向应变进行了近600 h的观测,研究煤样在不同气体压力下吸附、解吸CO2的变形特征。实验结果显示:煤样吸附/解吸CO2产生的膨胀/收缩变形,煤样吸附变形需要12 h甚至更长时间才能趋于稳定,原煤样品的吸附解吸变形呈各向异性;经历了吸附和解吸CO2的煤样均有不同程度的残余变形,气体压力低于1.5 MPa时残余体积应变低于0.6×10-3,可近似认为煤样吸附解吸变形过程可逆。通过煤样吸附解吸变形实验数据的拟合发现,Langmuir方程可反映煤样吸附解吸CO2变形随气体压力的变化规律。  相似文献   

5.
采用自主研制的高压瓦斯煤岩吸附-解吸测试系统,进行了型煤在不同温度条件下的吸附-解吸变形全过程试验,对型煤吸附与解吸瓦斯产生变形进行了研究。研究结果表明,型煤在不同温度条件下随时间的变形曲线具有相同的变化规律,即先后经历快速膨胀变形、缓慢膨胀至平衡变形、卸压瞬时膨胀变形、快速收缩变形、缓慢收缩至平衡变形5个阶段;型煤的吸附膨胀和解吸收缩曲线均具有朗格缪尔方程和幂函数方程特征;型煤在吸附过程中的膨胀变形具有各向异性,在解吸过程的收缩变形具有各向同性,解吸平衡的残余体应变与温度呈负相关。  相似文献   

6.
煤吸附解吸甲烷细观结构变形试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
周动  王辰  冯增朝  赵东  蔡婷婷 《煤炭学报》2016,41(9):2238-2245
利用扫描电镜与CT扫描相结合的方法,通过对直径为8.5 mm的细观煤样进行不同压力下的吸附解吸甲烷试验,研究其内部细观结构的变形规律。研究表明,煤样是煤基质中含有少量黏土矿物质的天然非均质岩体;吸附解吸甲烷过程中,煤的细观结构变形分为膨胀变形(密度减小)与挤压变形(密度增大)。低吸附压力下,含黏土矿物质区域急剧膨胀,对邻近煤基质形成局部挤压,细观变形程度明显,压力升高后膨胀变形增强,挤压变形减弱;不含黏土矿物质的煤基质区域变形程度较低,近似于均匀变形。解吸后,煤不同区域的变形恢复能力与其非均匀程度有关,非均匀性越强,其变形恢复能力越差。  相似文献   

7.
煤的溶剂萃取物成分及对煤吸附甲烷特性影响   总被引:1,自引:0,他引:1       下载免费PDF全文
煤中有机小分子相是煤的重要组成部分,为分析其对煤吸附甲烷的影响,在常压下(50 ℃),采用正己烷对张集和大柳塔煤样分别进行微波辅助萃取,得到萃取后煤样(残煤)和萃取物。采用GC/MS分析萃取物成分,并依此选取柴油作为正己烷萃取物的模型物,配置含柴油煤样(简称含油煤),开展了原煤、残煤和含油煤的甲烷等温吸附实验。研究结果表明:原煤和残煤吸附瓦斯在低压阶段差异不大,随着压力的增大,原煤吸附甲烷量逐渐高于残煤;含油煤则不同,压力较大时,同一压力段的瓦斯吸附增量高于原煤和残煤,低压时吸附甲烷量虽小于原煤和残煤,但随着压力的增大,最终吸附甲烷量略高于原煤。用Langmuir和Langmuir-Henry二元吸附模型对等温吸附数据进行拟合,得出煤吸附甲烷可分为2个过程,低压阶段主要为符合Langmuir模型的煤基质表面吸附,高压阶段主要为符合Henry模型的渗入煤基质的内部(孔隙、内表面)吸附;且煤中有机小分子有助于提高煤高压阶段的甲烷吸附量。  相似文献   

8.
瓦斯对冲击性煤样能量耗散的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于煤的冲击倾向性分类及指数测定方法,进行了不同瓦斯压力下煤样冲击倾向性测定,应用能量积聚与耗散的方法,分析了不同瓦斯压力环境中煤样单轴压缩与循环加卸载过程中能量积聚与耗散关系。研究表明:随着瓦斯压力的增大,煤样的冲击倾向性指数减小,冲击倾向性降低;煤样破坏前储存的弹性能降低,破坏时耗散能增率呈非线性快速降低趋势;在循环载荷作用下,煤样在相同循环中耗散能随着瓦斯压力的增加而增加。在不考虑瓦斯膨胀能的情况下,瓦斯压力的增加降低了煤层冲击地压的破坏性。因此,高瓦斯矿井在深部开采中进行冲击倾向性评价时应考虑瓦斯因素。  相似文献   

9.
煤体瓦斯吸附为放热过程,解吸为吸热过程,其温度能量变化的幅度与煤的变质程度、瓦斯吸附平衡压力等有关。以往的研究都采用等温吸附实验得出气体相关吸附数据,并通过其孔隙结构、相互作用力等来分析煤吸附气体的影响因素,但是鲜有学者从比表面Gibbs函数变化角度来探讨煤吸附气体机理。为此,研究了气体吸附过程中煤比表面Gibbs函数变化的相关特征参数计算公式,利用凤凰山矿和裴沟矿两种煤样进行等温吸附实验,得到了在4个不同温度(20,30,40,50 ℃)以及6个压力(0.2,1.2,1.5,2.5,3.0,4.0 MPa)下的等温吸附实验数据,利用单层吸附和多层吸附模型分别计算出不同煤样吸附气体过程中的比表面Gibbs函数变化。研究表明:采用两种不同方式计算煤样吸附甲烷的比表面Gibbs函数,随着温度的升高比表面Gibbs函数变化量减少,随着压力的升高比表面Gibbs函数变化增加。而应用单层吸附和多层吸附计算的能量相差较大,对这种现象分析了原因;计算了气体吸附解吸过程的热量,对比分析可知采用多层BET吸附模型得出的比表面Gibbs函数变化更接近实际;探讨了气体吸附能量变化的机理,表明气体吸附能量变化影响着吸附量的变化,而能量变化又同样受到煤样微观结构以及内部化学结构的影响。因此,煤样吸附解吸是一个复杂多变的过程,可以从改变能量的角度去探讨如何影响瓦斯解吸,达到提高瓦斯抽采效果的目的。  相似文献   

10.
煤低压吸附瓦斯变形试验   总被引:7,自引:0,他引:7       下载免费PDF全文
在瓦斯抽采和煤炭开采过程中,始终伴随着煤对瓦斯的吸附和解吸,煤吸附瓦斯发生膨胀变形,解吸瓦斯发生收缩变形。利用自制的吸附解吸试验装置,测试了煤在低压吸附瓦斯过程中煤体变形规律。试验结果表明:煤样在同一瓦斯压力下的吸附变形分为快速增长、缓慢增长、平衡3个阶段;煤体吸附瓦斯膨胀变形呈各向异性,垂直层理方向和平行层理方向的变形整体变化趋势呈现一致性;在等梯度加压吸附过程中,随着吸附瓦斯压力的不断增大,煤样吸附膨胀变形梯度值逐渐呈增大趋势;一次加压吸附煤膨胀变形量小于等梯度加压吸附至相同吸附压力值时的累积变形量。  相似文献   

11.
为了探讨煤质、变质程度、变形程度、实验温度、压力等因素对煤吸附/解吸性能的影响,系统采集了西南典型矿区煤样,进行了煤岩测试、工业分析和等温吸附/解吸实验。结果表明:中变质阶段,煤的吸附能力与变质程度呈正相关,高变质阶段呈负相关,Ro,max在3%左右吸附能力最强|煤的吸附能力与镜质组含量呈正相关,与惰质组含量呈负相关|低-特高固定碳阶段,煤的吸附能力与固定碳含量呈正相关关系,水分、挥发分的存在降低了煤的吸附能力|变形程度越高,吸附/解吸能力越强|温度升高,煤吸附量下降,解吸率增高。压力升高吸附量增大,解吸率下降。  相似文献   

12.
基于混合物理论的含瓦斯煤本构方程   总被引:3,自引:2,他引:1  
姜耀东  祝捷  赵毅鑫  刘京红  王宏伟 《煤炭学报》2007,32(11):1132-1137
以混合物理论的Truesdell公设为基础,认为含瓦斯煤是由固相煤、游离相瓦斯和吸附相瓦斯组成的饱和混合物,采用理论推导的方法构建含瓦斯煤的本构方程.方程表明,含瓦斯煤的力学变形特性由各组分特性、瓦斯吸附解吸作用和煤体的孔隙分布共同决定.不同瓦斯压力条件下含瓦斯煤的应力-应变曲线表明:吸附瓦斯促使煤体产生膨胀变形,降低其弹性模量;围压也将对含瓦斯煤的弹性模量和变形产生重要影响.  相似文献   

13.
吸附气体对突出煤渗流特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
姜德义  袁曦  陈结  蒋翔  范金洋  任松  李林 《煤炭学报》2015,40(9):2091-2096
煤层中瓦斯渗流特性不仅受地应力、煤孔隙结构等因素的影响,还因气体吸附而发生变化。以重庆市万盛区某煤矿突出煤层原煤为实验对象,在有效轴向应力和有效围压为1 MPa条件下,利用自制的三轴渗流试验机研究突出煤吸附二氧化碳、甲烷气体对渗流特性的影响。结果表明:1突出原煤吸附-渗流过程具有明显的阶段特征,煤体变形经历了初始快速变形阶段、缓慢变形发展阶段、变形稳定阶段、收缩变形阶段和渗流稳定阶段;2气体压力越大,煤体膨胀变形越大,相同气体压力下,煤体吸附二氧化碳变形增量大于吸附甲烷变形增量;3随着气体压力的增大,气体渗流速度逐渐增大,呈显著的指数函数关系,突出煤渗透率先减小后增大,具有明显的阶段性。  相似文献   

14.
瓦斯对煤冲击倾向性影响的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究瓦斯对煤冲击倾向性的影响,在不同瓦斯压力下测定了煤的冲击倾向性指标,分析了含瓦斯煤样在多级循环加载和单轴应变加载时能量积聚与耗散情况。研究结果表明:在孔隙瓦斯压力和吸附瓦斯共同作用下,煤样冲击倾向性指标由强向弱或由弱向无转变;瓦斯降低了煤样的强度,在多级循环过程中由损伤和塑性变形引起的耗散能增加,煤样储存弹性应变能的能力下降,完全破坏时煤样盈余能量减少,瓦斯弱化了煤的冲击特性;伴随瓦斯压力的增加,能量跌落系数逐渐变大,表明瓦斯致使煤样的破坏形式由脆性向脆塑性转变;基于瓦斯对煤的冲击倾向性和破坏形式的影响,在含瓦斯煤层冲击倾向性测定和冲击危险性评价过程中,应充分考虑瓦斯对煤层冲击特性的影响。  相似文献   

15.
张遵国  齐庆杰  曹树刚  郭平 《煤炭学报》2018,43(9):2484-2490
为深入研究煤层吸附气体过程中的变形特性,开展了He,CH_4,CO_2三种气体作用下的煤层吸附变形实验,同步测试煤样在CH_4,CO_2气氛下的气体吸附量,探讨了煤样等温吸附变形机理,建立了综合考虑吸附态气体和游离态气体作用的煤等温吸附变形模型。结果表明,He作用下煤样产生压缩变形,应变曲线可分为孔隙压密和线弹性变形两个阶段; CH_4和CO_2气氛下煤样吸附变形与吸附量均呈非线性关系,相同吸附量条件下煤样吸附CH_4产生的膨胀变形量大于吸附CO_2产生的膨胀变形量;煤基质在CO_2气氛下比在CH_4气氛下更容易产生压缩变形;游离态气体不仅通过孔隙压力对煤基质有压缩作用,还能通过改变煤结构促进煤的膨胀变形。可用二次函数表达游离态气体作用下的煤样变形量与孔隙压力关系。与相关模型的对比分析表明,建立的等温吸附变形模型能够对试验数据进行精确拟合,并能够很好地描述煤样在不同吸附性气体作用下的吸附变形特征。  相似文献   

16.
基于核磁共振的煤岩孔裂隙应力变形特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为探讨煤岩孔裂隙应力变形特征,设计不同围压(0,2,4,6,8,10 MPa)下的核磁共振实验,并基于弯曲变形理论对煤岩孔裂隙应力变形问题进行理论分析。实验得到各煤样孔裂隙在不同围压下的核磁共振T2谱图,绘制了各煤样不同围压下不同孔径的孔裂隙核磁信号衰减率图,推导出煤岩应力变形时孔裂隙截面积弹性减小率公式。实验显示:煤岩孔裂隙应力变形存在差异性:相同围压下,裂隙变化最显著,大中孔次之,微小孔变化微弱;对孔隙(或裂隙)而言,孔径大者变化程度大;但无烟煤样不同孔径孔裂隙应力变形差异性不明显。理论分析表明:相同应力作用下,孔径越大,孔裂隙应力变形越严重。煤岩孔裂隙在实验中通过加载围压发生的“被动式”变形与实际排水降压生产过程中在有效应力作用下的“部分主动式”变形存在一定差异,需引起注意。  相似文献   

17.
为厘清含瓦斯煤的吸附量与孔隙率及变形的映射规律,以高压容量法测试煤吸附瓦斯等温曲线的过程为条件,针对煤样在不同瓦斯压力的作用下,吸附量对煤孔隙率、变形的影响进行了理论分析;利用工业CT技术与高压容量法相结合的方法,研究含瓦斯煤的吸附量与孔隙率、变形的映射规律。结果表明:随着吸附瓦斯量的增加,煤的孔隙率逐渐降低,并趋于稳定值;煤的变质程度越高,其孔隙率演化的趋势越缓;煤的体积应变呈现近似于线性增长的特征。  相似文献   

18.
煤粒瓦斯变压吸附数学模型及数值解算   总被引:2,自引:0,他引:2       下载免费PDF全文
秦跃平  王健  郑赟  童兴  刘鹏  齐艺裴 《煤炭学报》2017,42(4):923-928
为了验证达西定律是煤粒瓦斯流动的普适性规律,在之前所做的不同形状煤粒的定压吸附解吸及变压解吸实验基础上,设计了封闭空间内煤粒瓦斯变压吸附实验,分别得到42.976,11.600~13.800,3.350~4.000和1.180~1.400 mm四种不同粒径的煤样在0.5,1,2和4 MPa四种初始压力下瓦斯累积吸附量随时间的变化情况。基于达西和菲克定律,分别建立封闭空间内煤粒瓦斯变压吸附数学模型。运用有限差分法计算模型,并编制Visual Basic计算机程序对方程进行解算,得到两种模型在不同时间不同初始瓦斯压力下的瓦斯累积吸附量。通过对比分析实验和数值模拟得到的ln[1-(Q_t/Q_∞)~2]与t关系图,发现封闭空间内煤粒瓦斯吸附过程同样遵循达西定律。这与之前所做的一系列研究所得结论一致,即无论是吸附还是解吸过程,煤粒外部压力变化与否,煤粒形状如何,均可得到达西定律是煤粒瓦斯流动基本规律。  相似文献   

19.
覃世福  李小亮 《中国矿业》2012,21(3):92-95,110
为了解吸附作用对原煤渗透特性的影响,利用自制的煤岩三轴渗透仪,在不同轴压和围压组合条件下,对以打通一矿低渗透突出煤层的原煤试样,采用稳态渗流法进行CO2和N2渗流试验。从渗流力学的观点,分析不同吸附性气体对原煤渗透率的影响。试验结果表明:气体吸附作用越强,气体吸附量越多,则煤样渗透率越低;气体吸附性越强,煤样受围压影响越小,煤样对气体吸附量增加幅度越大;气体压力与原煤渗透率呈乘幂函数关系。同时,给出了吸附膨胀应力与渗透率的关系表达式。研究结果对探索煤层真实的瓦斯运移规律具有一定的参考价值。  相似文献   

20.
构造煤瓦斯解吸初期特征实验研究   总被引:20,自引:0,他引:20       下载免费PDF全文
利用自制的煤样瓦斯解吸试验装置,在恒温30 ℃、不同压力、不同粒度条件下,研究平顶山和鹤壁的原生结构煤和构造煤的瓦斯解吸初期速度和解吸量,分析构造煤瓦斯解吸初期的影响因素,建立构造煤瓦斯初期解吸数学模型。实验结果表明:与原生结构煤相比,构造煤瓦斯解吸初期速度更大,其初始解吸速度为1.23~4.20 mL/(g·min),是相同实验条件下原生结构煤的1.36~2.84倍,尤其在前1 min内差别较大;构造煤瓦斯解吸量是一条单调递增的幂函数曲线,0~10 min的瓦斯解吸规律具有分段性,可分为快速解吸段、缓慢解吸段和平稳解吸段,构造煤前10 min瓦斯解吸量可达1 h内解吸总量的60%。分析认为构造煤中大孔和过渡孔的发育程度决定了构造煤瓦斯初期特征;构造煤瓦斯解吸初速度随粒度的减小而增加,但是在极限粒度以下煤粒度对瓦斯初期解吸速度影响较小;瓦斯解吸初速度与吸附平衡压力呈幂指数关系;构造煤瓦斯解吸初期曲线符合文特式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号