首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
朱春野  谢自立  郭坤敏 《功能材料》2005,36(11):1789-1793,1797
提出了气相形核生长(VPN)机理解释浮动催化体系中碳纳米管的生长过程。浮动催化系统中生长碳纳米管的活性碳原子是由苯热解产生的,被硫原子部分覆盖的液态铁颗粒是单壁碳纳米管的形核中心,生成的单壁碳纳米管继续径向生长、逐渐石墨化后,得到多壁碳纳米管。气相形核生长机理能够解释浮动催化系统生长碳纳米管的结构特征。  相似文献   

2.
通过对多壁碳纳米管(MWCNTs)进行氟化改性,获得氟碳原子比分别为0.28(CF0.28),0.56(CF0.56),0.78(CF0.78)的氟化多壁碳纳米管。将氟化多壁碳纳米管作正极活性物质涂覆于铝箔,金属锂片为对极,组装成锂/氟化多壁碳纳米管(Li/CFx)一次纽扣电池。采用热重分析(TGA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)进行结构和性能表征,通过恒流放电检测电池的电化学性能。结果表明:活性物质为CF0.78的正极电极的电化学性能最佳,在电流密度为39mA/g时放电比容量达724mAh/g,同时出现了稳定的放电平台。在0.05C放电倍率时,3种电极的活性物质利用率分别达到73.4%,89.6%,92.9%。相比0.05C,2C放电倍率下的放电比容量衰减率分别为68.8%,34.1%,39.6%,表明提高氟化程度,能够降低放电比容量衰减率,虽CF0.78相对CF0.56的放电化容量衰减率有所上升,但在相同放电倍率时,其放电曲线稳定性是最好的。  相似文献   

3.
The growth direction, morphology and microstructure of carbon nanotubes (CNTs) play key roles for their potential applications in electronic and energy storage devices. However, effective synthesis of CNTs in high crystallinity and desired microstructure still remains a tremendous challenge. Here we introduce an electric field for controlling the microstructure formation of CNTs. It reveals that the electric field not only make CNTs aligned parallel but also improve the density of CNTs. Especially, the microstructures of CNTs gradually change under electrical field. That is, graphite sheets are transformed from the “herringbone” structure to a highly crystalline structure, facilitating the transportation of electrons. Due to the improved aligned growth direction, high density and highly crystalline microstructure, the electrochemical performance of CNTs is greatly improved. When the CNTs are applied in supercapacitors, they present a high specific capacitance of 237 F/g, three times higher than that of the CNTs prepared without electrical field. Such microstructure modulation of CNTs by electric field would help to construct high performance electronic and energy storage devices.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) were synthesized by a novel method. The dc arc discharge in H2-Ar gas atmosphere with Fe3O4 as catalyst was used. The morphology and structures of the as-prepared SWNTs were characterized by SEM, HRTEM and Raman spectroscopy techniques. The results indicated that this new catalyst could be used to produce SWNTs with high purity and yield in large scale. The purity and yield of the SWNTs synthesized from these new catalysts were affected by the mixture buffer gas. Based on the overall ease and low-cost advantages of these new catalysts, these results suggest a potential opportunity for cost-effective and commercial production of SWNTs.  相似文献   

5.
Single-walled carbon nanotubes (SWCNTs) were prepared by a modified arc discharge furnace using 500?Torr helium as buffer gas at 600?°C. The effect of the catalyst type on the production of SWCNTs was studied by transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The experimental results indicated that the catalyst composition plays an important role in the production rate and purity of the SWCNTs product. Fe-Ni-Mg and Co-Ni powder catalysts demonstrated excellent catalytic effect at a catalyst content of 3?wt%. The soot production rate was up to 15?g/hr and the mean diameter of SWCNTs was about 1.3?nm.  相似文献   

6.
Multiwall carbon nanotubes (MWCNTs) were grown by dielectric barrier discharge (DBD)-type plasma enhanced chemical vapor deposition (PECVD) method in downstream. The temperature was 973 K and the compositions of gases were methane, hydrogen and oxygen in the total pressure of 0.05 MPa. The effect of O2 concentration in the mixture on the configuration of carbon nanotubes (CNTs) was investigated in detail. Results from scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that CNTs grown in CH4/H2 (38.6%/61.4%, volume) mixture have many defects and contained disordered graphitic materials. With the addition of appropriate amount of O2 (∼0.67%), high-purity CNTs could be obtained. However, no CNT, even no carbon matrix existed under the condition of an excessive oxygen concentration (>1.0%, volume) in the mixture. In order to understand the role of O2 during CNTs growth, optical emission spectroscopy (OES) was in-situ employed and the results predicted that the improvement of CNTs quality in O2 addition was attributed to the effect of OH oxidation from the reaction of atomic oxygen with hydrogen in the plasma.  相似文献   

7.
采用电弧放电法在氦气/乙炔混合气氛中,在不同压力下合成了碳纳米管.运用场发射扫描电镜、场发射透射电镜、X-射线衍射仪和拉曼光谱对碳纳米管的形貌进行了表征.采用可见发射光谱对碳纳米管的形成过程进行了原位诊断研究.场发射扫描电镜结果表明,在氦气/乙炔气氛中合成的碳纳米管的长度大于50微米,许多碳颗粒沉积在碳纳米管壁上.场发射透射电镜结果表明,在0.100MPa下合成的碳纳米管的壁厚明显大于0.035MPa下合成的碳纳米管的壁厚.可见发射光谱诊断结果表明,CH和C2物种可能作为碳纳米管形成的前驱体,其中,以H原子作为无定形炭的刻蚀物种.阳极消耗速率和产物在阴极的沉积速率随着反应器中压力的增加而增加.因此,可以通过加强阳极和乙炔的蒸发速率及CH和C2物种的沉积速率而增加碳纳米管的形成速率.  相似文献   

8.
Carbon nanotubes (CNTs) represent an important group of nanomaterials with attractive geometrical, electrical and chemical properties and are synthesised using a variety of techniques. In this study, CNTs are fabricated by arc discharge in liquid with a fully automatic setup, while this system is equipped with a heat exchange system. This fully automatic setup enables the controlling of gap between the two electrodes and temperature of the media. Furthermore, this system can cool down the solution that is heated due to arc and keep the temperature of solution constant during the arc discharge. The temperature of the solution affects the synthesising and structuring of CNTs. In this study, CNTs are fabricated between two graphite electrodes, which are submerged in LiCl (0.25?N) and with a voltage of 25?V, while Ni and Mo are used as catalysts. For comparative study, CNTs are synthesised under different thermal conditions, below zero, at environment temperature and at high temperature (up to 80°C), and the results are analysed, compared and discussed. The scanning electron microscopy, transmission electron microscopy and Raman spectroscopy are employed to study the morphology of these carbon nanostructures. The general impact of the solution temperature upon nanoproduct structures will be discussed.  相似文献   

9.
将化学气相沉积法(CVD)制备的纳米碳管提纯后,用透射电镜(TEM)观测了它的微观结构,通过实验对纳米碳管在不同温度下生长的结构特性进行了分析比较,得出了纳米碳管生长的最佳温度为750℃;并对纳米碳管粉体的拉曼(Raman)光谱进行了分析,得到了与透射电镜观测相一致的结论;最后测试了纳米碳管的场致发射特性.  相似文献   

10.
Bipolar pulsed arc-discharge method has been studied for the efficient production of high quality single-walled carbon nanotubes (SWNTs). Gas pressure and discharge current dependence of this method has been carried out to obtain the optimum production condition. The experimental results show no cathode deposition, and almost all the sublimated carbon becomes soot containing SWNTs. The production rate increases with increasing gas pressure and discharge current. The high production rate with high quality SWNTs is obtained around the conditions of helium gas pressure, p (He) = 50 – 70 kPa and discharge current, Id ? 55 A. The morphology of the SWNTs is measured by a TEM and the quality is analyzed by a Raman spectrometer.  相似文献   

11.
以碳毡为基底原位生长了碳纳米管(CNTs),借助化学气相渗透制备了CNTs-C/C复合材料。研究了催化剂含量对碳纳米管生长的影响以及不同含量碳纳米管对C/C复合材料弯曲性能的影响。结果表明:催化剂对CNTs产量影响较大,且含量越多,生成的CNTs量越大;原位生长CNTs引入的催化剂会导致CNTs-C/C复合材料弯曲性能变差;CNTs的加入改变了热解碳的沉积行为,诱导了球状和锥状小尺寸热解碳的形成,减少了微裂纹的出现。适量CNTs能提高C/C复合材料的弯曲强度和模量,并改善材料的断裂行为。  相似文献   

12.
本文以Fe-S为催化剂、低压空气为缓冲气体采用直流电弧放电法首次大量合成低成本、高质量的单壁碳纳米管。实验结果表明在电弧放电过程中通过控制空气流量,使得电弧腔室压强保持在6~12 KPa为最优制备条件。采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品的形貌和结构进行表征,结果表明该方法所制备的单壁碳纳米管具有较高结晶度,管壁表面光滑、其直径为1.5~6.0 nm.采用低压空气电弧放电法有望成为低成本、大量制备高质量单壁碳纳米管的重要技术手段之一。  相似文献   

13.
Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake   总被引:1,自引:0,他引:1  
Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe3O4-functionalized CNTs were prepared and studied using energy-filter mapping of Fe3O4. CNTs bearing Fe3O4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up.  相似文献   

14.
Abstract

Carbon nanotubes (CNTs) are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.  相似文献   

15.
以环己烷为碳源、二茂铁为催化剂前躯,采用浮游催化法成功的在碳纤维表面生长了碳纳米管(CNT),制备了多尺度杂化材料CNTs/CF。实验重点考察了反应温度、二茂铁浓度、载气等参数对CNT在纤维表面生长的影响,通过扫描电镜(SEM)、投射电镜(TEM)研究了CNTs/CF的形貌及产物CNT的微观结构。当固定反应温度为820℃、二茂铁-环己烷浓度为2g/100mL时,随着氢气在载气中含量在0~100%范围内变化,产物CNT直径亦有86nm降低至39nm。通过单丝拉伸测试发现,相比初始碳纤维,不同长度的CNTs/CF单纤维强度下降幅度均在10%以内。  相似文献   

16.
A facile strategy for the preparation of water-dispersible multi-walled carbon nanotubes (MWCNTs) in aqueous solution for the preparation of the three-dimensional (3D) graphene/carbon nanotube (G/CNT) hybrid architectures is proposed, where MWCNTs were functionalized by simultaneous radiation-induced graft polymerization of acrylic acid under the γ-ray (denoted as MWCNT-g-PAA) for improving its dispersibility. The stability of the aqueous solution of MWCNT-g-PAA in water is highly improved. We also use the MWCNT-g-PAA fabricating three-dimensional cylindrical graphene/carbon nanotube (G/CNT) hybrid architectures by a simple one-step hydrothermal process. We found that the as-prepared MWCNTs-g-PAA showed a very good dispersibility in GO solution with different concentration ratio and a promising precursor for preparing the graphene/CNT hybrid materials.  相似文献   

17.
利用介质阻挡放电等离子体化学气相沉积技术,在蒸镀有13nm Ni催化剂层的Si基材上,以CH4为碳源,H2与NH3的混和物为刻蚀和稀释气体,在630和750℃的不同温度条件下合成碳纳米管。实验研究了不同氨气比例条件下碳纳米管的生长情况,并给出了合成碳纳米管的最佳氨气含量区间,SEM和TEM测试发现,所合成的碳纳米管具有竹节型结构,Ni催化剂形貌表明碳纳米管生长符合顶端机制,实验还发现氨气含量对碳纳米管的生长影响很大,并对其原因进行了初步的分析.  相似文献   

18.
A simple method for high-yield, chemical vapor deposition (CVD) synthesis of serpentine carbon nanotubes, employing quartz substrates and a molecular cluster catalyst, is described. The growth mechanism is analyzed by controlled addition of nanoscale barriers, and by mechanical analysis of the curved sections. The serpentine structures are used to study the electrical transport properties of parallel arrays of identical nanotubes, which show three-terminal conductance that scales linearly with the number of nanotube segments. This article is published with open access at Springerlink.com  相似文献   

19.
The surfaces of multi-walled carbon nanotubes were grafted with amino functional groups by reacting acyl-chloride-functionalized carbon nanotubes (CNTs) with hexamethylene diamine, which improves the surfactivity of CNTs. The dispersity, surface morphology, and thermogravimetry of acid-treated and amino-functionalized CNTs were investigated. Amino-functionalized CNTs were added into epoxy resin to analyze the effects of amino functional groups on the properties of resin composites. It was found that the properties of CNTs, such as morphology and scale, were not affected by amino functional groups, but the dispersity in water was highly improved. Amino-functionalized CNTs are better dispersed in resin matrix, and the mechanical properties of composites are improved significantly, whereas the conductivity of composites is not enhanced as expected.  相似文献   

20.
在水辅助氧化作用下,直接在金属镍片上生长出宏观上定向生长的螺旋状碳纳米管,其长度达到7mm,直径在100-200nm,测试其场发射特性,开启场强为1.6V/μm,最大发射电流密度可达6mA/cm^2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号