首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pure and Sn-doped ZnO nanostructures have been synthesized by the microwave irradiation method. The influence of Sn loading on the morphology and microstructure was evaluated by using field emission scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive spectrum analysis techniques, X-ray diffraction, and Fourier transform infrared spectroscopy. A change in the growth pattern, from needle-like particles for pure ZnO to agglomerated spherical crystallites for Sn-doped ZnO, has been observed. TEM observations indicated that the average particle size of the pure ZnO nano needles is in the range of 40–60 nm, whereas on addition of Sn spherical nanoassemblies size lies in the range of 10–21 nm. The pure ZnO and Sn-doped ZnO nanostructures were further characterized for their optical properties by UV–Vis reflectance spectra (DRS) and photoluminescence (PL) spectroscopy.  相似文献   

2.
Controlled synthesis of ZnO nanorods (ZNRDs), nanotubes (ZNTs) and nanorings (ZNRs) has been carried out by a two-step sonochemical/chemical process at room temperature without any catalyst, template or seed layer. The crystallinity, structure and morphology of ZNRDs, ZNRs and ZNTs were examined by X-ray diffraction (XRD) analysis, scanning electron micrographs (SEM), high resolution transmission electron microscope (HR-TEM) and selected area electron diffraction (SAED). The as-prepared ZnO nanostructures were single crystalline with hexagonal cross-section and uniform size. The effect of precursor concentration on the growth and that of the etching duration on the hollow formation were analyzed, and the obtained results revealed that the precursor concentration and etching time play an important role in determining final morphologies of the samples. By tuning the etching time, the precise size control of ZNTs and ZNRs was achieved. Possible formation mechanisms of these nanostructures are proposed based on the experimental results.  相似文献   

3.
Zhang Y  Mu J 《Nanotechnology》2007,18(7):075606
A controlled synthesis of flower-?and rod-like ZnO nanostructures in a hydrothermal phase has been realized in the absence of an additional template. The well-defined morphologies are obtained by simply tuning the ratio of sodium hydroxide to zinc acetate in a narrow range. The products are characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism is suggested to be that the supersaturation of the precursor Zn(OH)(4)(2-) results in various nucleation habits, which induce the ZnO nanostructures with different morphologies.  相似文献   

4.
Quasi-one-dimensional and two-dimensional ZnO nanostructures have been fabricated through thermal evaporation approach. The microstructures of the ZnO nanostructures have been studied using scanning electron microscopy and high-resolution electron microscopy. Quasi-one-dimensional ZnO nanostructures are formed by dendritic growths of ZnO nanoparticles from the stem nanorods surfaces, forming particle-rod nanostructures. While epitaxial growths of branch nanorods from the stem nanorods configure two-dimensional ZnO nanostructures. The epitaxial growth orientation relationship can be described as [2? 110]R1 || [2? 110]R2 and (0001) R1 || (011?0)R2. The growth mechanism of the quasi-one-dimensional and two-dimensional ZnO nanostructures has been discussed.  相似文献   

5.
The umbrella-like ZnO nanostructures have been prepared by the morphological tailoring in the aqueous solution at 95 °C in the addition of heterogeneous seeds such as MnO2 and CdS nanoparticles. The morphology and structure of as-synthesized umbrella-like ZnO nanostructures have been characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscope (HRTEM), electron energy loss spectroscopy (EELS), field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The heterogeneous seeds play the critical role for the formation of umbrella-like ZnO nanostructures. Furthermore, the formation mechanism of the umbrella-like nanostructures has been phenomenally presented.  相似文献   

6.
The effect of the microwave power on the morphology and optical properties of zinc oxide nanostructures prepared using a microwave-assisted aqueous solution method has been investigated. The ZnO nanostructures were synthesized from zinc chloride and sodium hydroxide mixed aqueous solutions exposed for 5 min to microwave radiation at four different powers, namely 150, 450, 700 and 1000 W. The morphologies of the samples have been characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results showed that the power of microwave radiation influenced the shape and size of the synthesized nanostructures. It is also found that the average particle size of nanostructures decreased with decreasing microwave power. The results of X-ray diffraction (XRD) showed that all the as-prepared ZnO nanostructures are in crystalline form with high purity. The infrared (IR) spectra indicated that the as-prepared nano ZnO product can be used as infrared gas sensors such as an infrared carbon dioxide (CO2) and/or CO sensor. Optical properties of the as-prepared ZnO nanostructures were investigated by UV–vis spectroscopy and showed that the optical properties of as-synthesized ZnO samples are sensitive to the variation of the power of microwave radiation.  相似文献   

7.
In the present work, ZnO nanostructures were synthesized by monoethanolamine (MEA)-assisted ultrasonic method at low temperature. Structural analysis was carried out by X-ray diffraction (XRD) confirmed the formation of hexagonal wurtzite structure of ZnO. The effect of ammonia water on the molecular structure of MEA, and its effect on the morphology of ZnO nanostructures were monitored by electron microscopy. Scanning electron microscopy (SEM) results suggest that ZnO nanoparticles with 100 nm in diameter were produced in case of MEA-assisted ultrasonic method. However, as ammonia water was added into the reaction system the morphology of ZnO nanoparticles changed into nanorods, flower-like nanostructures and finally microrods. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies showed that as prepared ZnO nanostructures were single crystalline in nature and grew in different directions resulted in the formation of various structures. The growth mechanism of as prepared ZnO nanostructures was discussed in detail. It was proposed that the addition of ammonia water into the reaction system resulted into the formation of ethylene diamine (EDA) which directed the growth of ZnO. The optical property was studied by photoluminescence (PL) spectroscopy showed only UV emission and no defects mediated visible emission.  相似文献   

8.
Zn/ZnO metal/semiconductor nanostructures were successfully synthesised by a facile zinc-rich chemistry liquid-phase approach with zinc microspheres as sacrificial templates at ambient temperature. A series of globular Zn/ZnO core/shell structures and hollow microsphere architectures self-assembled by Zn/ZnO nanorod heterojunction arrays were obtained by controlling the amount of zinc particles. The structure, morphology, composition and optical properties of the products have been characterised by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and photoluminescent spectroscopy. A possible growth mechanism of the Zn/ZnO nanostructures has been proposed based on the structural analysis. The growth mechanism of Zn/ZnO hollow microspheres is ascribed to Kirkendall effect. A new strong blue emission at 440 nm and a green emission around 500 nm with an enhancement over one order of magnitude compared with the pure ZnO sample have been observed. These emission bands are attributed to two kinds of mechanisms that have been discussed in detail.  相似文献   

9.
Calcium hydroxide nanostructures have been synthesised by the reaction of calcium acetate with sodium hydroxide or tetramethylammonium hydroxide by a sonochemical method. Reaction conditions, such as the concentration of the Ca2+ ion, ageing time and power of the ultrasonic device show important roles in the size, morphology and growth process of the final products. The calcium oxide nanoparticles have been obtained by heating of calcium hydroxide nanostructures at 600°C. The calcium hydroxide and calcium oxide nanostructures were characterised by transmission electron microscopy, scanning electron microscopy and X-ray powder diffraction.  相似文献   

10.
Zinc oxide nanostructures were synthesized in an aqueous solution of hexamine and zinc nitrate by an electrochemical process. The effects of growth conditions, including electrical potential, growth temperature and template size, on morphology and composition of the nanostructures were systematically investigated. A negative potential enhanced the growth of single crystalline ZnO nanowire arrays while a positive potential caused nano-disks of ZnO and ZnO2 composites to grow on the substrate. The applied negative potential also helped room temperature growth of ZnO nanowires with a reduced growth rate. Similar growth behavior was observed on a bare substrate and that with pre-defined polymer template.  相似文献   

11.
A singularity flower-like ZnO nanostructure was prepared on a large scale through a very simple solution method at room temperature and under ambient pressure in a very short time. The flower-like ZnO nanostructures were self-assembled by thin and uniform nanosheets, with a thickness of around 5 nm. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology. The possible growth mechanism was discussed based on the reaction process. The blue shift in the UV-vis spectra of the ZnO nanostructures was also observed.  相似文献   

12.
Micro-structural and room and low temperature photoluminescence response of undoped one-dimensional ZnO were investigated. ZnO rods of different morphology and size were synthesized by controlling growth parameters through hydrothermal technique. The phase and microstructure analysis were carried out by X-ray diffraction and scanning electron microscopy. The room and low temperature photoluminescence spectra of the samples were studied. Near band edge sharp exciton emission peaks and broad defect-related peaks were observed. The ratio of band edge emission to deep level emission was controlled by tuning the initial concentration, pH and reaction time period. Optimal growth condition for growth of micro-rods with improved crystal quality was obtained with initial Zn2+ concentration of 0.5 M, at reaction temperature of 120 °C, pH of 9.9 and in a reaction time period of 6 h.  相似文献   

13.
Nano sized ZnO powders, with suitable amount of TiO2 (P25), have been successfully synthesized via a novel modified hydrothermal method by using zinc acetate. Titania nano powder plays an important role in fabrication of ZnO nano structure. The structure and morphology of the product were characterized by X-ray diffraction and scanning electron microscopy, which show different morphologies and particle sizes. Photocatalytical properties of the product exhibit strong improvement in the reactivity of seeded powders. These powders have better properties because of coupling effect of semiconductors, small powder size and reduced recombination of electron-hole in the surface of a catalyst.  相似文献   

14.
Hierarchical ZnO films consisting of nanoflower particulates are successfully grown by a solid–liquid interface reaction technique at room temperature without additives like surfactants, capping agent, or complexing agent. The structural, morphological, and photocatalytic properties of these films are studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–Vis spectroscopy. The nucleation, growth processes and hence the resulting morphology of the end product can be regulated by changing the concentration of LiOH and the time of reaction. SEM throws light on the chronology of the flower formation by studying the intermediate morphology. Electron microscopy results indicated that these ZnO nanostructures self-assembled to produce flower-like nanostructures. The highest photocatalytic efficiency was observed for the films prepared at the concentration of LiOH 0.5 mg/mL in ethanol at 24 h. On the basis of the results, a plausible growth mechanism for the formation of flower-like ZnO nanostructures is discussed.  相似文献   

15.
Flake-like ZnO nanostructures, which have potential applications in fields of photo catalysts, biosensors, solar cells, et al., were fabricated on indium doped tin oxide substrates through hydrothermal method at 90 °C. Zinc chloride hydrate and hexamine (HMT) were used as zinc source and the alkali source, respectively, no other surfactants were involved. The morphology evolution of ZnO from nanoflakes to the occurrence of nanorods can be attributed to the competition between the absorption effect of chloride ions and HMT. With the adsorption of chloride ions onto the polar faces instead of growth units, ZnO nanoflakes were formed by restraining the crystal growth along <0001> direction. Controllable growth of different ZnO nanostructures was achieved by tuning the corresponding stoichiometric ratios of reactants. ZnO nanoflakes were formed with equivalent concentrations of zinc chloride hydrate and HMT. Increase in the concentration of HMT resulted in the fabrication of the rod-on-flake structure, or even multilevel ZnO nanoflakes. Scanning electron microscopy results revealed that all these ZnO nanoflakes are with typical wurtzite hexagonal phase. The crystal and optical properties of the as-synthesized samples were characterized by X-ray diffraction spectrum and room temperature photoluminescence spectrometer, which showed close relationship with structure variations.  相似文献   

16.
In this study, we fabricated ZnO nanostructures using bamboo fibers as templates. The starting material used was zinc acetate, and the nanostructures were synthesized by soaking and calcining the bamboo fibers. The fabricated nanostructures were characterized using X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM), and ultraviolet-visible spectrophotometry. The results showed that the size of the ZnO nanoparticles was approximately 20–100 nm. When the ZnO nanoparticles were used as the catalyst in the photodegradation of methyl orange, the dye degraded by 95.98 % in 80 min. The response and recovery times of a gas sensor based on the ZnO nanoparticles were 25 and 24 s, respectively, during the detection of C2H5OH in a concentration of 10 ppm at 270 °C.  相似文献   

17.
Zinc oxide (ZnO) nanostructures have been prepared by pulsed laser deposition of the oxide onto Si(100) substrate at 600 degrees C. An examination of the morphology using atomic force microscopy and scanning electron microscopy reveals well formed pyramidal structures consistent with the growth habit of ZnO. A domain matched epitaxy across the interface makes the ZnO pyramids orient along the axes of Si(100) surface. The pyramidal nanostructures signify an intermediate state in the growth of hexagonal nanorods of ZnO. The hardness of the nanostructures as well as their response to oxygen gas have been investigated using nanoindentation and conducting probe methods respectively. ZnO nanostructures are much harder than their bulk. The hardness of ZnO pyramids obtained by nanoindentation is 70 +/- 10 GPa which is about one order more that of bulk ZnO. Besides, the nanostructures exhibit high sensitivity towards oxygen. A 70% increase in the resistance of ZnO nanostructures is observed when exposed to oxygen atmosphere.  相似文献   

18.
Novel ZnO core/shell nanostructures were constructed by depositing a porous ZnO layer directly on the surfaces of pre-fabricated ZnO nanowires through a facile chemical method. The morphology and structure of the obtained products have been investigated by field-emission scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction analysis. In these unique nanostructures, the porous overlayer exhibits a large surface area for sufficient dye loading to enhance light harvesting and the ZnO nanowire cores provide direct conduction pathways for the photogenerated electron transport to diminish the chance of electron recombination. The obtained ZnO nanostructures were used as photoanode material in dye-sensitized solar cell which showed an increase in performance of 141 % compared with an equivalent solar cell employing ZnO nanowire arrays as photoanode. This result was achieved mainly due to an increase in photogenerated current density directly resulting from improved light harvesting of the porous layer.  相似文献   

19.
Gu F  Xu GQ  Ang SG 《Nanotechnology》2008,19(14):145606
Poly-copper tetraaminophthalocyanine (CuTAPc) nanowires and nanotubes were successfully fabricated on porous alumina templates by electropolymerization and characterized using field-emission scanning electron microscopy (FE-SEM), energy-dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM) and Raman microscopy. The lengths of these nanostructures could be controlled by the number of cycles applied and the monomer concentrations, while their diameters are confined by the pore size of the template. The product of electropolymerization (whether as nanowires or nanotubes) is a function of the monomer concentrations. The morphology of electropolymerized nanowires was found to be sensitive to the changes in scan rates and monomer concentrations. These organometallic nanostructures may have applications in micro-electronics, chemical sensing, and catalysis.  相似文献   

20.
ZnO micro- and nanostructures with a variety of morphologies have been synthesized using Zn(NO3)2·6H2O and pyridine by a microwave-assisted aqueous solution method at 90 °C for 10 min. The pyridine has a significant influence on the morphology of ZnO. Various morphologies of ZnO (hexagonal columns, linked hexagonal needles, hollow structures, and hexagonal nanorings) were obtained by adjusting the concentration of pyridine. The effect of the type of other alkaline additive (aniline and triethanolamine) on the morphology of ZnO was also investigated. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号