首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation reports the biogenesis of silver nanoparticles (Ag NPs) using extracts of a medicinal plant Nothapodytes foetida. Total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) assay were carried out for the microwave-assisted extract (MAE) of N. foetida using methanol as solvent and the conditions for extraction were optimised by response surface methodology (RSM). The effects of operating variables such as extraction time, temperature and ratio of sample to solvent were studied using central composite design (CCD). A mathematical model with a high determination coefficient (R2) for TPC (0.991) and FRAP (0.995) was obtained. The optimal conditions of extraction for TPC were 48.6 ºC, 23.15 min and 2.04:30 (g/mL) and for FRAP 52.31ºC, 12.32 min and 1.67: 30 (g/mL). Under these conditions, the experimental yields of TPC and FRAP were 2.426 mg gallic acid equivalents (GAE)/g dry powder and 14.985mg of FeSO4·7H2O/g of dry powder, respectively. Ag NPs were characterised using UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The synthesised Ag NPs have also shown potent activity against the human pathogenic Staphylococcus aureus.  相似文献   

2.
3.
Biogenic synthesis of nanoparticles offers an attractive alternate to chemical synthesis methods. Various hazard free, eco-friendly methods of synthesis of silver nanoparticles are in operation. In chemical reduction methods, the reducing agent is a chemical solution, whereas in biological ones, the collection of enzymes, especially nitrate reductase, plays this role. The highest antibacterial activity of silver nanoparticles synthesised by chemical and biological methods was found in Staphylococcus aureus and Escherichia coli. The paper aims to discuss some fundamental issues about non-biological methods and benefits about biological methods for silver nanoparticles synthesis and their antibacterial studies.  相似文献   

4.
以浓度为88%的甲酸溶液作为纺丝溶剂,采用静电纺丝和紫外光照射还原的方法制备了含纳米银颗粒的明胶/壳聚糖纳米纤维。研究发现,壳聚糖的加入量低于明胶质量的3/16时可以得到纳米纤维,纤维平均直径随着硝酸银加入量的增大而减小,纤维表面纳米银的平均直径随着硝酸银加入量的增大而增大,在纺丝体系中硝酸银的加入量存在一个极限值。所制得含纳米银的明胶/壳聚糖纳米纤维对金黄色葡萄球菌和绿脓杆菌具有较好的抑菌性能,纺丝时加入1%硝酸银制得纳米纤维膜的抑菌率达到99%以上,这种抗菌型纳米纤维可以应用于医用敷料等领域。  相似文献   

5.
Silver nanoparticles were synthesised by polyol method using copolymer templates under microwave heating. The copolymer templates were synthesised by reacting the synthesised macromonomers with comonomer using free radical polymerisation. The copolymers were characterised by Fourier Transform InfraRed, 1H-NMR and 13C-NMR. The copolymers were further characterised by gel permeation chromatography for molecular weights and thermogravimetric analysis for thermal stability. These copolymers were used as nanoreactors in the syntheses of silver nanoparticles. The nanoparticles were characterised by various instrumental methods like UV-visible, FT-IR and High-resolution transmission electron microscopy to establish the average particle size and shape. Antibacterial activities of the copolymer-stabilised silver nanoparticles were tested on various microorganisms.  相似文献   

6.
The biosynthesis of silver nanoparticles (AgNps) has a wide range of applications, and here we develop a rapid synthesis using the leaf extract of Ipomea carnea. We demonstrated that 100?mL of a 1?mM silver nitrate solution was reduced to AgNps by 500?µL of I. carnea extract in 5?min and that one or more of the chemical constituents present in the extract acted as the reducing agent. Surface plasmon resonance peaks were observed from 410 to 440?nm for AgNps synthesised using the plant extract, and the peaks showed a characteristic blue shift with variation of pH from 2 to 8. Particle size analysis revealed the size of the AgNps to be from 30 to 130?nm, which was also confirmed by dynamic light scattering, atomic force microscopy and transmission electron microscopy. Additionally, the antibacterial effects of the AgNps were evaluated against selected human pathogens such as Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Klebsiella pneumoniae, Aeromonas hydrophila, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa. Finally, the AgNps were impregnated with a cellulose acetate membrane to form an antimycobacterial membrane. Antimycobacterial activity against a non-pathogenic Mycobacterium smegmatis showed that the AgNp-embedded membrane system has a zone of inhibition of 14?mm.  相似文献   

7.
The development of synthetic processes for oxide nanomaterials is an issue of considerable topical interest. While a number of chemical methods are available and are extensively used, the collaborations are often energy intensive and employ toxic chemicals. On the other hand, the synthesis of inorganic materials by biological systems is characterized by processes that occur at close to ambient temperatures and pressures, and at neutral pH (examples include magnetotactic bacteria, diatoms, and S-layer bacteria). Here we show that nanoparticulate magnetite may be produced at room temperature extracellularly by challenging the fungi, Fusarium oxysporum and Verticillium sp., with mixtures of ferric and ferrous salts. Extracellular hydrolysis of the anionic iron complexes by cationic proteins secreted by the fungi results in the room-temperature synthesis of crystalline magnetite particles that exhibit a signature of a ferrimagnetic transition with a negligible amount of spontaneous magnetization at low temperature.  相似文献   

8.
微孔膜对双孢蘑菇物流升温后保鲜品质的影响   总被引:1,自引:1,他引:0  
李云云  魏丹  张敏 《包装工程》2016,37(11):52-57
目的研究生鲜双孢蘑菇从(3±1)℃的冷藏环境转移到(10±1)℃的物流或销售环境后,延缓由于温度升高导致的品质快速下降的方法。方法升温后分别在聚乙烯微孔袋(20 cm×30 cm×40μm,φ=0.3 mm,N=4)上均匀穿刺2,4,6个微孔,并与未穿刺的进行对照,测定保鲜过程中双孢蘑菇各指标变化。结果升温后增加微孔数量能明显改善包装内的气体含量,维持较好的感官品质、可溶性固形物和抗坏血酸含量(P0.05),并且能有效抑制双孢蘑菇白度值的降低及相对电导率和多酚氧化酶活性的增加(P0.05),但会促进其质量损失率的增加。结论双孢蘑菇在升温后增加微孔膜的微孔数量能更好地保持双孢蘑菇的品质,其中增加4个微孔数的综合保鲜效果最佳。  相似文献   

9.
壳聚糖修饰银纳米颗粒的制备及抗菌性能研究   总被引:2,自引:0,他引:2  
采用液相化学还原法,以壳聚糖为修饰剂,硼氢化钠为还原剂,制备了壳聚糖修饰银纳米颗粒(chitosan-Ag NPs)。通过X射线粉末衍射仪、透射电子显微镜、傅立叶变换红外光谱仪等对所制备样品的结构和形貌进行了表征。结果表明,所制备纳米颗粒具有面心立方Ag的晶型结构,壳聚糖通过氨基和羟基中的N、O原子与Ag+的化学键合作用修饰在纳米颗粒表面,起到了限制颗粒粒径长大和防止其团聚的作用。采用肉汤连续稀释法检测了样品对大肠杆菌和金黄色葡萄球菌的抑菌杀菌性能,结果表明chitosan-Ag NPs具有优异的抗菌性,抗菌性能受到粒径大小的影响。  相似文献   

10.
By using a bio-mechanochemical approach combining mechanochemistry (ball milling) and green synthesis for the first time, silver nanoparticles (Ag NPs) with antibacterial activity were successfully synthesized. Concretely, eggshell membrane (ESM) or Origanum vulgare L. plant (ORE) and silver nitrate were used as environmentally friendly reducing agent and Ag precursor, respectively. The whole synthesis took 30?min in the former and 45?min in the latter case. The photon cross-correlation measurements have shown finer character of the product in the case of milling with Origanum. UV–Vis measurements have shown the formation of spherical NPs in both samples. TEM study has revealed that both samples are composites of nanosized silver nanoparticles homogenously dispersed within the organic matrices. It has shown that the size and size distribution of the silver nanoparticles is smaller and more uniform in the case of eggshell membrane matrix implying lower silver mobility within this matrix. The antibacterial activity was higher for the silver nanoparticles synthesized with co-milling with Origanum plant than in the case of milling with eggshell membrane.  相似文献   

11.
Abstract

Eco-friendly green synthesis of nanoparticles using medicinal plants gained immense importance due to its potential therapeutic uses. In the current study, silver nanoparticles (AgNPs) were synthesized using water extract of Jurinea dolomiaea leaf and root at room temperature. MTT assay was used to study anticancer potential of AgNPs against cervical cancer cell line (HeLa), breast cancer cell lines (MCF-7), and mouse embryonic fibroblast (NIH-3 T3) cell line for toxicity evaluation. The antioxidant potential was evaluated using stable DPPH radicals. In addition, the apoptotic nuclear changes prompted by AgNPs in more susceptible HeLa cells were observed using fluorescence microscope through DAPI and PI staining. Physiochemical properties of biosynthesized AgNPs were characterized using various techniques. AgNPs were formed in very short time and UV–vis spectra showed characteristic absorption peak of AgNPs. SEM and TEM showed spherical shape of AgNPs and XRD revealed their crystalline nature. EDX analysis revealed high percentage of silver in green synthesized AgNPs. FTIR analysis indicated involvement of secondary metabolites in fabrication of AgNPs. In vitro cytotoxic and antioxidant study revealed that herb and biosynthesized AgNPs exhibited significant dose-dependent and time-dependent anticancer and antioxidant potential. Furthermore, study on normal cell line and microscopic analysis of apoptosis revealed that AgNPs exhibited good safety profile as compared to cisplatin and induces significant apoptosis effect. Based on the current findings, it is strongly believe that use of J. dolomiaea offers large scale production of biocompatible AgNPs that can be used as alternative anticancer agents against cancer cell lines tested.  相似文献   

12.
Abstract

Silver nanoparticles (AgNPs) have been widely used in diverse fields due to their superior properties. Currently the biosynthesis of AgNPs is in the limelight of modern nanotechnology because of its green properties. However, relatively low yield and inefficiency diminish the prospect of applying these biosynthesized AgNPs. In this work, a rapid mass AgNP biosynthesis method using the cell-free extract of a novel bacterial strain, Lysinibacillus sphaericus MR-1, which has been isolated from a chemical fertilizer plant, is reported. In addition, the optimum synthesis conditions of AgNPs were investigated. The optimum pH, temperature, dosage, and reaction time were 12, 70 °C, 20 mM AgNO3, and 75 min, respectively. Finally, AgNPs were characterized by optical absorption spectroscopy, zeta potential and size distribution analysis, x-ray diffraction, electron microscopy, and energy-dispersive x-ray spectroscopy. The results revealed that these biosynthesized AgNPs were bimolecular covered, stable, well-dispersed face centered cubic (fcc) spherical crystalline particles with diameters in the range 5–20 nm. The advantages of this approach are its simplicity, high efficiency, and eco-friendly and cost-effective features.  相似文献   

13.
Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro‐AgNPs nanocomposite. The characteristics of the Cipro‐AgNPs nanocomposite were studied by X‐ray diffraction (XRD), UV–Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier‐transform infra‐red analysis (FT‐IR) and zeta potential analyses. The XRD of AgNPs and Cipro‐AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT‐IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro‐AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro‐AgNPs nanocomposites confirmed the needle‐lumpy shape. The zeta potential for Cipro‐AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro‐AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro‐AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson–Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro‐AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro‐AgNPs are suitable for drug delivery.  相似文献   

14.
The antibacterial effect of silver nanoparticles (denoted as Ag NPs) is closely related to size. This could partly explain why size controllable synthesis of Ag NPs for bactericidal application is drawing much attention. Thus, we establish a facile and mild route to prepare size-tunable Ag NPs with highly uniform morphologies and narrow size distributions. The as-prepared Ag NPs with averaged sizes of 2, 12 and 32?nm were characterized by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy (UV–vis), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The antimicrobial effect of the as-prepared Ag NPs with different particles size was assessed by broth dilution and disk diffusion as well as measurement of optical density (OD600). Moreover, their antibacterial mechanism was discussed in relation to morphology observation of microorganism by scanning electron microscopy (SEM) and to concentration detection of Ag+ by stripping voltammetry. It was found that the parameters such as reactant molar ratio, reaction time, dropping speed, and most of all, pH of the reactant solutions, have significant influences on size-regulation of Ag NPs. The as-prepared Ag NPs exhibit excellent antibacterial properties, and their antimicrobial activities increase with decreasing particles size. Besides, two kinds of mechanisms, i.e., contact action and release of Ag+, are responsible for the antimicrobial effect of Ag NPs.  相似文献   

15.
This study describes a novel biological route for the biosynthesis of silver oxide nanoparticles utilising the aqueous extract of Callistemon lanceolatus D.C. leaves. Formation of silver oxide nanoparticles was confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope–energy dispersive X-ray spectroscopy and X-ray diffraction spectroscopy analysis. The biologically synthesised silver oxide nanoparticles were found to be 3–30 nm in size with spherical and hexagonal shape by high-resolution transmission electron microscope analysis. Furthermore, the biogenic silver oxide nanoparticles demonstrated significant (p?in vitro antioxidant methods. These particles also exhibited significant (p?相似文献   

16.
键合型纳米银-腈纶纤维的制备及其抗菌性质   总被引:7,自引:3,他引:4  
用部分偕胺肟化的腈纶纤维与硝酸银溶液反应,使纤维表面络合上银离子,再用甲醛溶液还原Ag(Ⅰ)成金属Ag,得银复合腈纶纤维。控制AgNO3浓度,可得到银粒尺寸在纳米级的纳米银复合腈纶纤维(Ag—PAN)。用IR光谱和SEM进行表征。对Ag-PAN进行抗菌实验,结果显示:Ag—PAN对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌有很强的杀灭作用,Ag含量达0.8%的Ag-PAN对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌的杀灭率超过99.99%。Ag含量迭1.3%时,Ag-PAN对3种菌的杀灭时间均在0.5h以内。  相似文献   

17.
Material properties are strongly dependent on material structure. The large diversity and complexity of material structures provide significant opportunities to improve the properties of the materials, expanding their applications. Here, we discuss the fabrication of a multifunctional silver film prepared by controlling the nucleation and growth of silver particles. Silver films with high hydrophobicity and antibacterial activity were fabricated by adopting an electrochemical approach. The dependence of the hydrophobic and antibacterial properties on the size and shape of the silver particles was first investigated. Small-sized silver particles exhibited a high antibacterial rate, while a porous silver film composed of dendritic particles showed a significant hydrophobic activity. By regulating the reaction time, current density, and silver salt concentration, a silver film with a contact angle of 150.9° and an antibacterial rate of 54.7% was synthesized. This study demonstrates that finding a compromise between different material structures is a suitable way to fabricate multifunctional devices.
  相似文献   

18.
Silver nanoparticles (AgNPs) have been widely used in diverse fields due to their superior properties. Currently the biosynthesis of AgNPs is in the limelight of modern nanotechnology because of its green properties. However, relatively low yield and inefficiency diminish the prospect of applying these biosynthesized AgNPs. In this work, a rapid mass AgNP biosynthesis method using the cell-free extract of a novel bacterial strain, Lysinibacillus sphaericus MR-1, which has been isolated from a chemical fertilizer plant, is reported. In addition, the optimum synthesis conditions of AgNPs were investigated. The optimum pH, temperature, dosage, and reaction time were 12, 70 °C, 20 mM AgNO3, and 75 min, respectively. Finally, AgNPs were characterized by optical absorption spectroscopy, zeta potential and size distribution analysis, x-ray diffraction, electron microscopy, and energy-dispersive x-ray spectroscopy. The results revealed that these biosynthesized AgNPs were bimolecular covered, stable, well-dispersed face centered cubic (fcc) spherical crystalline particles with diameters in the range 5–20 nm. The advantages of this approach are its simplicity, high efficiency, and eco-friendly and cost-effective features.  相似文献   

19.
Conventional UV-vis spectroscopic and transmission electron microscopy methods were used to monitor the kinetics, formation and characterisation of silver nanoparticles in the methionine-promoted reduction of silver(I). The silver nanoparticles (purple colour; λ max?=?550?nm) are corn-shaped and aggregated, and the average particle size is about 23?nm. The kinetics of silver nanoparticles formation has been studied as a function of [Ag(I)], [methionine] and [CTAB]. We see that [Ag(I)] has no effect on the rate of silver nanoparticles formation. At higher [CTAB]?≥?40.0?×?10?4?mol?dm?3, silver nanoparticles were not observed. Methionine is responsible for interparticle interaction, increase in aggregate size and cross-linking between the particles, and it acts as complexing, reducing, adsorbing and capping agents. A mechanism consistent with the observed kinetics has been proposed and discussed.  相似文献   

20.
纳米银抗菌材料研发现状   总被引:40,自引:0,他引:40  
介绍了纳米银抗菌材料的研究与开发现状 ,并叙述了纳米银的制备及其应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号