首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High delivery efficiency, prolonged drug release, and low systemic toxicity are effective weapons for drug delivery systems to win the battle against metastatic breast cancer. Herein, it is shown that Spirulina platensis (S. platensis) can be used as natural carriers to construct a drug‐loaded system for targeted delivery and fluorescence imaging‐guided chemotherapy on lung metastasis of breast cancer. The chemotherapeutic doxorubicin (DOX) is loaded into S. platensis (SP) via only one facile step to fabricate the DOX‐loaded SP (SP@DOX), which exhibits ultrahigh drug loading efficiency and PH‐responsive drug sustained release. The rich chlorophyll endows SP@DOX excellent fluorescence imaging capability for noninvasive tracking and real‐time monitoring in vivo. Moreover, the micrometer‐sized and spiral‐shaped SP carriers enable the as‐prepared SP@DOX to passively target the lungs and result in a significantly enhanced therapeutic efficacy on lung metastasis of 4T1 breast cancer. Finally, the undelivered carriers can be biodegraded through renal clearance without notable toxicity. The SP@DOX described here presents a novel biohybrid strategy for targeted drug delivery and effective treatment on cancer metastasis.  相似文献   

2.
Reducing the side effects and improving the drug utilization are important work in anti-cancer drug delivery. In this paper, a novel dual-pH-sensitive drug delivery system was reported. Mesoporous silica nanoparticle (MSN) was applied to load anti-cancer drug doxorubicin hydrochloride (DOX) and was covered by mono-6-deoxy-6-EDA-β-cyclodextrine (β-CD-NH2) to block the pores through pH-sensitive boronate ester bond. And the carriers were then coated with methoxy poly(ethylene glycol) (mPEG) through another pH-sensitive benzoic imine bond. mPEG leaving studies, in vitro cellular uptake studies and the flow cytometry analysis, proved that carriers was “stealthy” at pH 7.4, but could be “activated” for cytophagy by cancer cells in weakly acidic tumor tissues (pH 6.5) due to the departure of mPEG. β-CD-NH2 leaving studies, the in vitro drug release studies and the in vitro cytotoxicity studies proved that boronate ester bond linking MSN and β-CD-NH2 was stable at both pH 7.4 and 6.5, but could be hydrolyzed intracellular to release DOX for cellular apoptosis due to the lower pH (5.0). In summary, the novel dual-pH-sensitive drug delivery system fabricated with a dynamic protection strategy should have great application potential in anti-cancer drug delivery fields.  相似文献   

3.
Magnetic nanoparticles have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8-ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T 2 MRI signal intensity and can be used as a MRI contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.   相似文献   

4.
Objective: The goal of the present work was to make novel co-polymeric micellar carriers for the delivery of docetaxel (DTX).

Significance: Co-polymeric micelles can not only solubilize DTX and eliminate the need for toxic surfactants to dissolve it, but also cause passive targeting of the drug to the tumor and reduce its toxic side effects.

Methods: Poly(styrene-maleic acid) (SMA) was conjugated to poly (amide-ether-ester-imide)-poly ethylene glycol (PAEEI-PEG). Copolymer synthesis was proven by Fourier transform infrared (FTIR) and 1H-nuclear magnetic resonance (1H-NMR). The SMA-PAEEI-PEG micelles loaded with DTX were prepared and their critical micelle concentration (CMC), zeta potential, particle size, entrapment efficiency, and their release efficiency were studied. MCF-7 and MDA-MB231 breast cancer cells were used to evaluate the cellular uptake and cytotoxicity of the micelles. The antitumor activity of the DTX-loaded nanomicelles was measured in Balb/c mice.

Results: The FTIR and HNMR spectroscopy confirmed successful conjugation of SMA and PAEEI-PEG. The drug loading efficiency was in the range of 34.01–72.75% and drug release lasted for 120?h. The CMC value of the micelles was affected by the SMA/PAEEI-PEG ratio and was in the range of 29.85–14.28?µg/ml. The DTX-loaded micelles showed five times more cytotoxicity than the free drug. The DTX loaded micelles were more effective in tumor growth suppression in vivo and the animals showed an enhanced rate of survival.

Conclusion: The results show that the SMA-PAEEI-PEG micelles of DTX could potentially provide a suitable parenteral formulation with more stability, higher cytotoxicity, and improved antitumor activity.  相似文献   

5.
Nano‐sized in vivo active targeting drug delivery systems have been developed to a high anti‐tumor efficacy strategy against certain cancer‐cells‐specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO‐PEG‐OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor‐mediated tumor‐specific targeting delivery. Owing to the high loading efficiency and accurate targeting delivery of anti‐cancer drug doxorubicin (DOX), our DOX loaded NGO‐PEG‐OCT complex offers a remarkably improved cancer‐cell‐specific cellular uptake, chemo‐cytotoxicity, and decreased systemic toxicity compared to free DOX or NGO‐PEG. More importantly, due to its strong near‐infrared absorption, the NGO‐PEG‐OCT complex further enhances efficient photothermal ablation of tumors, delivering combined chemo and photothermal therapeutic effect against cancer cells.  相似文献   

6.
Objective: This study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor.

Significance: Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR.

Methods: In this study, DOX-TPP-loaded micelles based on acetal-PEG-PCCL were prepared and their physicochemical properties were characterized. The cellular uptake and ability to induce apoptosis of the micelles was confirmed by flow cytometry in MCF-7/ADR cells. In addition, cytotoxicity of the micelles was studied in MCF-7 cells and MCF-7/ADR cells. Confocal is used to study the subcellular distribution of DOX. Free DOX-TPP or DOX-TPP-loaded acetal-PEG-PCCL micelles were administered via intravenous injection in the tail vain for the biodistribution study in vivo.

Results: The diameter of micelles was about 102.4?nm and their drug-loading efficiency is 61.8%. The structural characterization was confirmed by 1H NMR. The micelles exhibited better antitumor efficacy compared to free doxorubicin in MCF-7/ADR cells by MTT assay. The apoptotic rate and the cellular uptake of micelles were significantly higher than free DOX and DOX-TPP. Micelles can efficiently deliver mitochondria-targeting DOX-TPP to tumor cells. The result of bio-distribution showed that the micelles had stronger tumor infiltration ability than free drugs.

Conclusions: In this study, mitochondriotropic DOX-TPP was conjugated to the nanocarrier acetal-PEG-PCCL via ionic interaction to form a polymer, which spontaneously formed spherical micelles. The cytotoxicity and cellular uptake of the micelles are superior to free DOX and exhibit mitochondrial targeting and passive tumor targeting, indicating that they have potential prospects.  相似文献   

7.
One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π–π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.  相似文献   

8.
Abstract

One strategy for cancer treatment is combination therapy using nanoparticles (NPs), which has resulted in enhanced anti-cancer effects and reduced cytotoxicity of therapeutic agents. Polyamidoamine dendrimer (PAMAM) has attracted considerable attention because of its potential applications ranging from drug delivery to molecular encapsulation and gene therapy. In this study, PAMAM G5 modified with cholesteryl chloroformate and alkyl-PEG was applied for co-delivery of doxorubicin (DOX) and plasmid encoding TRAIL into colon cancer cells, in vitro and in vivo. The results showed DOX was efficiently encapsulated in modified carrier (M-PAMAM) with loading level about 90%, and the resulting DOX-loaded M-PAMAM complexed with TRAIL plasmid showed much stronger antitumor effect than M-PAMAM containing DOX or TRAIL plasmid. On the other hand, the obtained results demonstrated that the treatment of mice bearing C26 colon carcinoma with this developed co-delivery system significantly decreased tumor growth rate. Thus, this modified PAMAM G5 can be considered as a potential carrier for co-delivery of drug and gene in cancer therapy.  相似文献   

9.
Context: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase (hTS) overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously.

Objective: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery.

Materials and methods: For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells.

Results and discussion: Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy.

Conclusions: Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.  相似文献   


10.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

11.
Cyclo(Arg‐Gly‐Asp) peptide (cRGD) decorated disulfide (SS) containing poly(vinyl alcohol) nanogels (cRGD‐SS‐NGs) with an average diameter of 142 nm prepared by inverse nanoprecipitation, “click” reaction, and cRGD conjugation are developed for targeted treatment of integrin overexpressing human glioblastoma in vivo. Doxorubicin (DOX) release from cRGD‐SS‐NGs is highly inhibited under physiological conditions, while accelerated at endosomal pH and in response to cytoplasmic concentration of glutathione. Confocal microscopy shows that cRGD‐SS‐NGs facilitate the cellular uptake and intracellular DOX release in αvβ3 integrin overexpressing human glioblastoma U87‐MG cells. DOX‐loaded cRGD‐SS‐NGs present much better killing activity toward U87‐MG cells than that for nontargeted nanogels determined by MTT assay. The in vivo imaging and biodistribution studies reveal that DOX‐loaded cRGD‐SS‐NGs have a much better tumor targetability toward human U87‐MG glioblastoma xenograft in nude mice. Also the tumor growth is effectively inhibited by treatment with DOX‐loaded cRGD‐SS‐NGs, while continuous tumor growth is observed for mice treated with nondecorated nanogels as well as free DOX. Furthermore, the treatment with DOX‐loaded cRGD‐SS‐NGs has much fewer side effects, rendering these nanogels as a new platform for cancer chemotherapy in vivo.  相似文献   

12.
Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR‐780 loaded pH‐responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine‐based biomimetic micellar shell and acid‐sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site‐specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX‐resistant MCF‐7/ADR cells. Meanwhile, the tumor site‐specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF‐7/ADR tumor growth in tumor‐bearing mice. These results demonstrate that the well‐designed IR‐780 loaded polymeric prodrug micelles for hyperthermia‐assisted site‐specific chemotherapy present an effective approach to reverse drug resistance.  相似文献   

13.
Objectives: Paclitaxel (PTX) has been indicated for the treatment of a variety of solid tumors, whereas artesunate (ART) has been reported to have the potential for use in combination chemotherapy. In this study, the combination of ART and PTX was prepared in nanoparticle to induce the synergic effect and improve therapeutic efficiency in treatment of breast cancer.

Methods: Dual anticancer agents (PTX and ART) were loaded into Poly-D,L-lactic-co-glycolic acid (PLGA) nanoparticle (NP) by solvent evaporation technique from oil-in-water emulsion, stabilized with Tween 80. Physicochemical properties of obtained nanoparticles (PTX-ART-NPs) were characterized including particle size (Z), polydispersity index (PDI), zeta potentials (ZP), encapsulation efficiency (EE), and in-vitro drug release. Combination index (CI) was calculated to determine the synergic effect of the combination and select the best ratio of ART and PTX. The final NPs analyzed intracellular uptake, cytotoxicity assay, and apoptosis study.

Results: The final NP had a small size (around 120?nm) with a narrow size distribution (PDI <0.3). EE values for each drug were 87.8?±?1.1% and 99.5?±?0.1% for ART and PTX, respectively, and drugs were released from NPs in a controlled release pattern. All combinations of PTX and ART had CI values under 1, which confirmed the synergic effects. Meanwhile, NP preparation increased cytotoxicity on three breast cancer cell-lines comparable to free drugs.

Conclusions: Combination of ART- and PTX-loaded PLGA NP showed promising results for anticancer therapy, especially for breast cancer treatment.  相似文献   

14.
Cell adhesion of nanosystems is significant for efficient cellular uptake and drug delivery in cancer therapy. Herein, a near‐infrared (NIR) light‐driven biomimetic nanomotor is reported to achieve the improved cell adhesion and cellular uptake for synergistic photothermal and chemotherapy of breast cancer. The nanomotor is composed of carbon@silica (C@SiO2) with semi‐yolk@spiky‐shell structure, loaded with the anticancer drug doxorubicin (DOX) and camouflaged with MCF‐7 breast cancer cell membrane (i.e., mC@SiO2@DOX). Such biomimetic mC@SiO2@DOX nanomotors display efficient self‐thermophoretic propulsion due to a thermal gradient generated by asymmetrically spatial distribution. Moreover, the MCF‐7 cancer cell membrane coating can remarkably reduce the bioadhesion of nanomotors in biological medium and exhibit highly specific self‐recognition of the source cell line. The combination of effective propulsion and homologous targeting dramatically improves cell adhesion and the resultant cellular uptake efficiency in vitro from 26.2% to 67.5%. Therefore, the biomimetic mC@SiO2@DOX displays excellent synergistic photothermal and chemotherapy with over 91% MCF‐7 cell growth inhibition rate. Such smart design of the fuel‐free, NIR light‐powered biomimetic nanomotor may pave the way for the application of self‐propelled nanomotors in biomedicine.  相似文献   

15.
Objective: Difference of pH that exists between the skin surface and blood circulation can be exploited for transdermal delivery of drug molecules by loading drug into pH-sensitive polymer. Eudragit S100 (ES100), a pH-sensitive polymer having dissolution profile above pH 7.4, is used in oral, ocular, vaginal and topical delivery of drug molecules. However, pH-sensitive potential of this polymer has not been explored for transdermal delivery. The aim of this research work was to exploit the pH-sensitive potential of ES100 as a nanocarrier for transdermal delivery of model drug, that is, Piroxicam.

Methods: Simple nanoprecipitation technique was employed to prepare the nanoparticles and response surface quadratic model was applied to get an optimized formulation. The prepared nanoparticles were characterized and loaded into Carbopol 934 based hydrogel. In vitro release, ex vivo permeation and accelerated stability studies were carried out on the prepared formulation.

Results: Particles with an average size of 25–40?nm were obtained with an encapsulation efficiency of 88%. Release studies revealed that nanoparticles remained stable at acidic pH while sustained release with no initial burst effect was observed at pH 7.4 from the hydrogel. Permeation of these nanocarriers from hydrogel matrix showed significant permeation of Piroxicam through mice skin.

Conclusion: It can be concluded that ES100 based pH-sensitive nanoparticles have potential to be delivered through transdermal route.  相似文献   


16.
Metal‐organic frameworks (MOFs) as drug carriers have many advantages than traditional drug carriers and have received extensive attention from researchers. However, how to regulate the microstructure of MOFs to improve the efficiency of drug delivery and sustained release behaviour is still a big problem for the clinical application. Herein, the authors synthesise surfactant‐modified ZIF‐8 nanoparticles with different microstructures by using different types of surfactants to modify ZIF‐8. The surfactant‐modified ZIF‐8 nanoparticles have the larger specific surface area and total micropore volumes than the original ZIF‐8, which enables doxorubicin (DOX) to be more effectively loaded on the drug carriers and achieve controlled drug sustained release. Excellent degradation performance of ZIF‐8 nanoparticles facilitates the metabolism of drug carriers. The formulation was evaluated for cytotoxicity, cellular uptake and intracellular location in the A549 human non‐small‐cell lung cancer cell line. ZIF‐8/DOX nano drugs exhibit higher cytotoxicity towards cells in comparison with free DOX, suggesting the potential application in nano drugs to cancer chemotherapy.Inspec keywords: nanomedicine, lung, nanofabrication, drug delivery systems, cellular biophysics, nanoparticles, cancer, toxicology, biomedical materials, drugs, organometallic compounds, surfactants, porosity, biodegradable materialsOther keywords: controlled drug sustained release, nanodrugs, controllable microstructures, drug loading, metal‐organic frameworks, traditional drug carriers, drug delivery, surfactant‐modified ZIF‐8 nanoparticles, specific surface area, micropore volumes, doxorubicin, degradation performance, metabolism, cytotoxicity, cellular uptake, intracellular location, A549 human nonsmall‐cell lung cancer cell line, cancer chemotherapy  相似文献   

17.
This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe3O4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating–sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41?°C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37?°C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.  相似文献   

18.
Drug resistance is the greatest challenge in clinical cancer chemotherapy. Co‐delivery of chemotherapeutic drugs and siRNA to tumor cells is a vital means to silence drug resistant genes during the course of cancer chemotherapy for an improved chemotherapeutic effect. This study aims at effective co‐delivery of siRNA and anticancer drugs to tumor cells. A ternary block copolymer PEG‐PAsp(AED)‐PDPA consisting of pH‐sensitive poly(2‐(diisopropyl amino)ethyl methacrylate) (PDPA), reduction‐sensitive poly(N‐(2,2′‐dithiobis(ethylamine)) aspartamide) PAsp(AED), and poly(ethylene glycol) (PEG) is synthesized and assembled into a core‐shell structural micelle which encapsulated doxorubicin (DOX) in its pH‐sensitive core and the siRNA‐targeting anti‐apoptosis BCL‐2 gene (BCL‐2 siRNA) in a reduction‐sensitive interlayer. At the optimized size and zeta potential, the nanocarriers loaded with DOX and BCL‐2 siRNA may effectively accumulate in the tumor site via blood circulation. Moreover, the dual stimuli‐responsive design of micellar carriers allows microenviroment‐specific rapid release of both DOX and BCL‐2 siRNA inside acidic lysosomes with enriched reducing agent, glutathione (GSH, up to 10 mm ). Consequently, the expression of anti‐apoptotic BCL‐2 protein induced by DOX treatment is significantly down‐regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV‐3 cells and thus dramatically inhibited tumor growth.  相似文献   

19.
Light‐triggered drug delivery based on near‐infrared (NIR)‐mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light‐responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light‐absorber, Rb x WO3 (rubidium tungsten bronze, Rb‐TB) nanorods. With doxorubicin (DOX) payload, the DOX‐loaded Rb‐TB composite (Rb‐TB‐DOX) simultaneously provides a burst‐like drug release and intense heating effect upon 808‐nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb‐TB‐DOX to the MCF‐7 cancer cells. Most remarkably, Rb‐TB‐DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX‐resistant MCF‐7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo‐photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo‐photothermal therapy is also conducted and realized on pancreatic (Pance‐1) tumor‐bearing nude mice. Apart from its promise for cancer therapy, the as‐prepared Rb‐TB can also be employed as a new dual‐modal contrast agent for photoacoustic tomography and (PAT) X‐ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X‐ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb x WO3 nanorods for applications in cancer theranostics.  相似文献   

20.
Multidrug resistance (MDR) and adverse side effects are the major challenges facing cancer chemotherapy. Here, pH/protease dually responsive, sericin‐coated mesoporous silica nanoparticles (SMSNs) for lysosomal delivery of doxorubicin (DOX) to overcome MDR and reduce systemic toxicity are reported. Sericin, a natural protein from silkworm cocoons, is coated onto MSNs as a gatekeeper via pH sensitive imine linkages. The sericin shell prevents the premature leakage of encapsulated DOX from MSNs in extracellular environment. Once reaching drug‐resistant tumors, sericin's cell‐adhesive bioactivity enhances cellular uptake of SMSNs that are in turn transported into perinuclear lysosomes, thus avoiding drug efflux mediated by membrane‐bound pumps. Lysosomal acidity triggers cleavage of pH sensitive linkage between sericin and MSNs concurrently with lysosomal proteases deconstructing sericin shell. This pH/protease dual responsiveness leads to DOX burst release into cell nuclei, inducing effective cell death, thus reversing MDR. These DOX‐loaded SMSNs not only effectively kill drug‐resistant cells in vitro, but also significantly reduce the growth of DOX‐resistant MCF‐7/ADR (breast cancer cells) tumor by 70% in a preclinical animal model without eliciting systemic toxicity frequently encountered in current clinical therapeutic formulations. Thus, the dually responsive SMSNs are an effective, lysosome‐tropic, and bio‐safe delivery system for chemotherapeutics for combating MDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号