首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrus reticulata is economically important tree fruit crop in Pakistan, fortified with various nutrients and minerals including Vitamin C and secondary metabolites. Nanotechnology is a twenty‐first century science and deals with production of minute particles termed as nanoparticles. In present study, silver nanoparticles (AgNPs) were synthesised through green method by utilising leaves of Olea europea as main reducing and capping agent. The synthesised AgNPs were characterised through UV visible spectroscopy, SEM, and energy dispersive X‐ray. Furthermore, different concentrations of AgNPs (10, 20, 30 ppm) in combination with Thidiazuron (0.5, 1.0 mg/l) were added onto MS medium to study development and secondary metabolites production in callus culture of C. reticulata. Callus induction percentage (96%) was more in 20 ppm AgNPs and 1 mg/l TDZ concentration. Moreover, high total phenolic, flavonoid contents, and antioxidant activity was observed in 20 ppm AgNPs combined with 0.5 and 1 mg/l TDZ. Enzymatic components (SOD, POD and CAT) were increased in MS medium augmented with 30 ppm AgNPs and TDZ. The total protein content (TPC) was significant in callus cultures treated with TDZ only. This study provides the first evidence of green synthesised AgNPs on callus culture developments and further quantification of biochemical profiling in C. reticula. Inspec keywords: nanoparticles, silver, ultraviolet spectra, scanning electron microscopy, antibacterial activity, agricultural products, nanotechnology, biotechnology, agricultural engineering, nanofabrication, genetic engineering, cropsOther keywords: green synthesised silver nanoparticles, morphogenic variations, biochemical variations, kinnow mandarin, citrus reticulata L, nutrients, minerals, green method, UV visible spectroscopy, energy dispersive X‐ray, MS medium, secondary metabolites production, callus induction percentage, TDZ, flavonoid contents, callus culture developments, capping agent, phenolic contents, tree fruit crop  相似文献   

2.
A modified green approach for the synthesis of stable silver nanoparticles (AgNPs) using tea leaf extract is described. The method involves the reduction of silver salt by the polyphenols present in the green tea leaf extract and requires no additional capping/stabilising agents. Compared to other biogenic methods for the synthesis of AgNPs, the uniqueness of the approach described here lies in its simplicity, low-cost, and rapid synthesis rate; the reaction being completed within 10–15 min at room temperature. The reaction was carried out in alkaline medium without stirring and heating, and requires no special cleaning or drying of the glassware used. The synthesised AgNPs were characterised by UV–Vis spectroscopy and transmission electron microscopy (TEM). The results showed that AgNPs with a strong surface plasmon resonance peak around 410 nm and particle size in the 5–30 nm range were prepared. The synthesised AgNPs show excellent chemical stability for more than six months in aqueous solution. Additionally, we showed that the as-synthesised AgNPs can be used as highly selective colorimetric and optical sensors for the detection of cysteine. Thus, with a simple synthesis strategy, and enhanced stability, these green-tea-functionalised AgNPs have the potential for further applications as biosensors and antimicrobial agents.  相似文献   

3.
The aim of the present research work was to synthesize silver nanoparticles (AgNPs) using Salacia chinensis plant extract and to evaluate its antibacterial activity. AgNPs were successfully synthesized and formation of AgNPs was confirmed by visual color change and UV (ultraviolet) spectroscopy. Prepared AgNPs were purified and characterized by using dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDAX), and transmission electron microscopy (TEM). UV peak at 434 nm confirmed the formation of AgNPs. DLS studies showed that AgNPs size prepared in all conditions were in the range of 100–200 nm. XRD studies revealed crystalline nature of AgNPs. EDAX studies confirmed the presence of silver in colloidal dispersion and images were recorded by using SEM and TEM. Synthesized AgNPs were found to be effective against Staphylococcus aureus and Pseudomonas aeruginosa. In conclusion, AgNPs could serve as a good alternative in treatment of bacterial infections in this era of multidrug resistance.  相似文献   

4.
In the present study, silver nanoparticles (AgNPs) with a flower-like structure were synthesized through an easy, rapid and eco-friendly pathway using Phyllanthus amarus leaf extract. The obtained AgNPs were characterized using ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In addition, the antimicrobial and catalytic activities of the bio-synthesized AgNPs were carried out. Our results indicated that the concentration of the Ag precursor and the volume of the leaf extract played key roles in the formation of the flower-shaped AgNPs. Morphology study confirms the shape of the obtained bio-AgNPs as flower like structure. This study also showed the presence of clear capping layers surrounding and apparently interacting with the nanoparticles. Moreover, our studies indicated this interaction to involve bio-organic capping agents in the leaf extract. UV–Vis absorption spectra confirmed the formation of AgNPs with an optimized size. The zeta (ζ) potential of the AgNPs attests the stability of the nanoparticles. FTIR spectra provided evidence for the presence of biomolecules responsible for the reduction as well as capping of the AgNPs. Finally, the bio-synthesized AgNPs were shown to be an excellent microbial activity against the selected pathogens and enhanced catalyst of the reduction of rhodamine B.  相似文献   

5.
The titanium dioxide nanoparticles (TiO2·NPs) were synthesized utilizing Origanum vulgare under room temperature. The green synthesized TiO2 NPs excitation was confirmed using UV–Vis spectrophotometer at 320 nm. Scanning electron microscopy analysis showed TiO2·NPs are spherical in shape and connected with one another. Dynamic light scattering analysis results specified high stability in nanoparticles, with an average particle size of 341 nm. Fourier transform infrared spectroscopy peaks revealed the presence of bioactive functional groups in Origanum vulgare aqueous leaf extract much needed for the TiO2·NPs formation. X-ray diffraction spectra showed the TiO2·NPs are amorphous in nature. Furthermore, the green synthesized TiO2·NPs wound healing activity was examined in the excision wound model by measuring wound closure, histopathology and protein profiling, revealed significant wound healing activity in Albino rats. In conclusion, our results bared TiO2·NPs have delivered a novel therapeutic route for wound treatment in clinical practice.  相似文献   

6.
A novel approach for synthesis of copper oxide nanoparticles is reported by separation of nucleation and growth. The nano-material was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV–Vis diffuse reflectance spectroscopy, transmission electron microscopy, atomic force microscopy, and Brunauer–Emmett–Teller analyses. Optical analysis of mono-dispersed nanostructure copper oxide by UV–Vis diffused reflectance spectroscopy showed the band gap value of 1.47 eV with a blue-shift in the optical band gap due to quantum confinement effect. The dynamic light scattering and zeta potential results showed fairly narrow size distribution and colloidal stability. The results showed that nano-particles were mono-dispersed spheres of 8 nm with no aggregation. Cell viability of treated murine fibroblast cell line (L-929) treated by different concentrations of nanoparticles showed significant viability up to 96% at concentrations 15 and 30 μg ml?1. The nanoparticles exhibited outstanding and stable antibacterial activity against Staphylococcus aureus ATCC 6538 at 30 µg ml?1. The viability and reactive oxygen species (ROS) generation in the L-929 cell line indicated that the nanoparticles were not toxic at the concentrations which were effective on bacteria. ROS analysis using DCFH-DA probe on L-929 were exposed to 7.5–60 μg ml?1 of copper oxide nanoparticles in 6 h revealed ROS generation was decreased dramatically compare to the untreated cells and positive control.  相似文献   

7.
An efficient protocol for synthesis of silver nanoparticles (AgNPs) using the combination of aqueous extract of Tinospora cordifolia leaves and 5 mM silver nitrate (AgNO3) solution was developed. This study revealed that bioactive compounds present in the extract function as stabilizing and capping agent for AgNPs. Scanning electron microscope and transmission electron microscope studies confirm the structure and surface morphology of the AgNPs. The size of synthesized AgNPs was in the range of 30–50 nm having spherical morphology. The crystalline nature of NPs was defined by the X-ray diffraction pattern. The AgNPs were found to be toxic against pathogenic bacteria such as Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC 29213) and against plant pathogenic fungi Fusarium oxysporum (MTCC 8608) and Sclerotinia sclerotiorum (MTCC 8785). The use of AgNPs as antibacterial and antifungal agent is advantageous over other methods for control of pathogenic microorganisms, and it can be of great importance in developing novel drugs for curing many lethal diseases.  相似文献   

8.
This study was organised to check the effect of silver nanoparticles and silver nitrate on rice growth against biotic stress. Silver nanoparticles were synthesised by using plant extract as reducing agent, followed by characterisation through UV Vis spectroscopy, XRD, EDS and SEM. Aspergillus application significantly reduced rice plant fresh mass (0.9%), dry mass (0.21%), root length (2.3%), shoot length (5.2%) and root number (1%) in comparison to control. Similarly, leaf area, leaf fresh mass, dry mass and leaf number were also reduced by 23.1, 0.02, 0.11 and 0.9%, respectively. AgNPs and AgNO3 treatments increased the root length (16.2 & 12.8%), shoot length (21 & 20%), root number (8.1 & 6.8%), plant fresh weight (6.4 & 5%) and plant dry weight (4.6 & 3.5%) in 75mg/l treatment of AgNPs and AgNO3 respectively. Similarly, AgNPs and AgNO3 treatment (75 mg/l concentrations) reflected remarkable increase in leaf area (58.8 & 57.2 %), leaf number (4.3 & 3.7 %), leaf fresh weight (1.7 & 1.4 %) and leaf dry weight (0.9 & 0.8 %). Overall AgNPs showed more significant results as compared to AgNO3. The quantity of aflatoxins ranged from 3.1 to 7.7 μg/kg against tolerable limit (4 µg/kg). Overall AgNPs and AgNO3 treatments showed significant results and it could be considered as a strategy for aflatoxin management in rice plants.Inspec keywords: crops, scanning electron microscopy, nanoparticles, X‐ray diffraction, toxicology, agricultural pollution, agricultural safety, silver compounds, ultraviolet spectroscopyOther keywords: biotic stress, silver nanoparticles, AgNPs, silver nitrate, super kernel rice, Kala Shah Kaku research centre, UV–Vis spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, rice plant fresh mass, root number, leaf area, leaf fresh mass, dry mass, leaf number, root length, leaf fresh weight, leaf dry weight, examined rice plants, rice growth, aflatoxins, scanning electron microscopy, Aspergillus application, AgNO3   相似文献   

9.
In the current study, silver nanoparticles (AgNPs) were biosynthesized using galbanic acid (GA), a sesquiterpene coumarin. The formation of GA-AgNPs was characterized by ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX), and X-ray diffraction (XRD). The biosynthesized GA-AgNPs were spherical in shape with an average particle size of 142.33 ± 32.6 nm. The results from the antibacterial assays suggested that biosynthesized GA-AgNPs were more potent against multi-drug resistant (MDR) and non-MDR pathogenic bacteria than the crude GA alone. The nanoparticles also showed potent antiproliferative potential against H1229 and MCF-7 cancer cells with IC50 values of 25 μg/mL and 50 μg/mL by the MTT assay, respectively. These NPs showed good antioxidant (30 % at 100 µg/mL), anti-inflammatory (99.5 % at 500 µg/mL), and anti-coagulant properties without significant hemolysis on red blood cells (RBCs). These results confirm the benefits of using the green, simple, and cost-effective manner for the synthesis of AgNPs with excellent biological properties and hemocompatibility.  相似文献   

10.
Green synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined. The colloidal AgNPs was brownish with surface plasmon resonance at 402.5 and 410 nm for NEA‐AgNPs and TEA‐AgNPs, respectively; while FTIR indicated that protein molecules were responsible for the capping and stabilisation of the nanoparticles. The spherical nanoparticles had size of 15.21–77.49 nm. The nanoparticles significantly inhibited the growth of tested bacteria (63.20–88.10%) and fungi (82.20–86.10%), and also scavenged DPPH (37.48–79.42%) and hydrogen peroxide (20.50–96.50%). In addition, the AgNPs degraded malachite green (78.97%) and methylene blue (25.30%). Furthermore, the AgNPs displayed excellent anticoagulant and thrombolytic activities using human blood. This study has demonstrated the potential of xylanases to synthesise AgNPs which is to the best of our knowledge the first record of such. The present study underscores the relevance of xylanases in nanobiotechnology.Inspec keywords: visible spectra, catalysis, ultraviolet spectra, silver, microorganisms, antibacterial activity, transmission electron microscopy, surface plasmon resonance, nanoparticles, nanofabrication, colloids, blood, Fourier transform infrared spectra, particle sizeOther keywords: Ag, fungal xylanases‐mediated synthesis, silver nanoparticles, catalytic applications, biomedical applications, green synthesis, metallic nanoparticles, Trichoderma longibrachiatum L2, transmission electron microscopy, antimicrobial agents, antioxidant agents, catalytic agents, thrombolytic agents, surface plasmon resonance, spherical nanoparticles, FTIR spectra, anticoagulant agents, colloidal nanoparticles, biomaterials, Aspergillus niger L3, UV‐vis spectroscopy, Fourier transform infrared spectroscopy, protein molecules, DPPH, hydrogen peroxide, malachite green, methylene blue, human blood, nanobiotechnology  相似文献   

11.
Tin oxide nanoparticles (size?=?14 nm) have been prepared using DNA, a biological molecule, by co-precipitation method. The SnO2 catalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron spectroscopy, fourier transform infra-red spectroscopy, photoluminescence spectroscopy and UV–Vis spectroscopy. The photocatalytic properties of SnO2 nanoparticles were investigated via methyl orange as a model organic compound under UV light irradiation. The study proves SnO2 as an efficient catalyst in removing organic pollutants in water.  相似文献   

12.
A facile and eco-friendly synthetic approach was employed to synthesize superparamagnetic magnetite (Fe3O4) nanoparticles with cubic lattice structure. Zucchini and pomegranate peel-extracts were used as natural stabilizer and surfactant. The X-ray diffraction patterns revealed that the green synthetic technique was successful in formation of highly distributed Fe3O4 nanoparticles using both of the above extracts. The infrared (IR) analysis further confirmed the phase formation and the binding of extracts with Fe3O4 nanoparticles. Based on UV–Vis analysis, the samples showed the characteristic of surface plasmon resonance in the presence of Fe3O4 nanoparticles. The as-synthesized samples were heated at 550 °C for 2 h. It was found that the particles however grew, their sizes remained in nanoscale regime, indicating their thermal stability. The VSM analysis indicated that the as-synthesized samples have a saturation magnetization of 21.4 emu/g (using zucchini peel extract) and 13.3 emu/g (using pomegranate peel extract), which increased respectively to 45.8 emu/g and 38.1 emu/g after the heating process. A negligible coercivity in the samples with the particle sizes of less than 10 nm suggests superparamagnetic behavior of the samples.  相似文献   

13.
The as-synthesized BiOCl nanoparticles were characterized by x-ray diffraction (XRD) and ultraviolet–visible (UV–Vis) techniques. The XRD pattern showed that a highly pure and crystalline phase has been obtained. The UV–vis diffuse reflectance spectroscopy (DRS) studies revealed the indirect band gap value of about 3.32 eV for the fabricated semiconductor. The disappearance of the dye, monitored spectrophotometrically, follows approximately pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Besides, the effect of some parameters such as the influence of the initial pH, catalyst weight, initial dye concentration, oxidant concentration, and salt concentration on the degradation of malachite green dye solution under visible light irradiation were investigated. The optimum conditions for the degradation of dye were 25 mg L?1 dye concentration, pH of 8, and a catalyst amount of 0.7 g mL?1. The addition of an optimal amount of hydrogen peroxide and potassium persulfate increases the degradation rate while NaCl and Na2CO3 decrease the rate. Complete mineralization has been confirmed by UV–Vis spectroscopy  相似文献   

14.
The present investigation reports the biogenesis of silver nanoparticles (Ag NPs) using extracts of a medicinal plant Nothapodytes foetida. Total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) assay were carried out for the microwave-assisted extract (MAE) of N. foetida using methanol as solvent and the conditions for extraction were optimised by response surface methodology (RSM). The effects of operating variables such as extraction time, temperature and ratio of sample to solvent were studied using central composite design (CCD). A mathematical model with a high determination coefficient (R2) for TPC (0.991) and FRAP (0.995) was obtained. The optimal conditions of extraction for TPC were 48.6 ºC, 23.15 min and 2.04:30 (g/mL) and for FRAP 52.31ºC, 12.32 min and 1.67: 30 (g/mL). Under these conditions, the experimental yields of TPC and FRAP were 2.426 mg gallic acid equivalents (GAE)/g dry powder and 14.985mg of FeSO4·7H2O/g of dry powder, respectively. Ag NPs were characterised using UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The synthesised Ag NPs have also shown potent activity against the human pathogenic Staphylococcus aureus.  相似文献   

15.
In this study, copper nanoparticles (Cu NPs) were synthesised by using diethylenetriamine as a protective agent in chemical reduction method. The obtained nanoparticles were characterised by various spectroscopic techniques like powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), UV–visible spectroscopy, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal analysis (TG/DTA). The structure and composition were estimated by PXRD, FTIR, EDS, UV–visible and TG/DTA techniques, while particles size and morphology behaviours were investigated by SEM and TEM instrumentation. A noteworthy, average particle size of nanoparticles was found around 40 nm with spherical shapes. Furthermore, the applications part of NPs were studied as a catalyst for one-pot solvent-free green synthesis of 3,4-dihydropyrano[c]chromenes from different aromatic aldehydes, malonitrile and 4-hydroxycoumarin by stirring at 80 °C. Moreover, the antibacterial properties of NPs were assessed in vitro against human bacterial pathogen such as Staphylococcus aureus, Escherichia coli, Klebsiella sp. and Pseudomonas aruginosa using agar well diffusion method. Gram positive bacteria S. aureus (18 mm) exhibited a maximum zone of inhibition at 60 µg/ml of Cu NPs. Nonetheless, antibacterial activities of Cu NPs (10–100 µg) were compared with four well-known antibiotics likes amikacin (30 mcg), ciprofloxacin (5 mcg), gentamicin (5 mcg) and norfloxacin (10 mcg). This study indicates that Cu NPs exhibited a strong antibacterial activity against all the test pathogens even at lower concentration.  相似文献   

16.
SnS nanoparticles were synthesised by the precipitation method using SnCl2.2H2O and Na2S.xH2O and the nanoparticles were characterised by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. From the particles’ XRD pattern, a strong peak at 2θ = 31.5? was observed, which confirms the Herzenbergite orthorhombic crystal structure of SnS. The FTIR result also confirmed the SnS nanoparticles at 2354 cm?1 and 615 cm?1. Second, thin SnS films were prepared on a glass substrate by the electron beam evaporation technique at room temperature and annealed at 100°C, 200°C and 300°C. The effect of the annealing temperature on structural and optical properties of the SnS films was characterised by XRD and ultraviolet–visible (UV–Vis) analysis. From the experimental studies, optical absorption of SnS films increases with respect to the annealing temperature, while the values of band gap energy (Eg) get reduced from 1.77 to 1.57 eV.  相似文献   

17.
In this paper, we studied the synergistic effect of sodium citrate dispersant and polyvinylpyrrolidone or polyvinylalcol capping polymer on controlling the size of copper nanoparticles (CuNPs) that were prepared by the chemical reduction method. The CuNPs were characterised by using ultraviolet–visible (UV–Vis) spectroscopy, transmission electron microscopy, and X-ray diffraction techniques. The size of the nanoparticles could be predicted via their UV–Vis absorbance. In the presence of capping polymers, the size of CuNPs was significantly changed, ranging from 2 ± 1 to 20 ± 7 nm with and without sodium citrate dispersant, respectively. Moreover, surface plasmon resonance of ultrafine CuNPs (2 nm in diameter) could be observed in the short wavelength region by using UV–Vis spectra. Our finding, could offer a new synthetic approach to the production of highly stable, small-sized CuNPs.  相似文献   

18.
ABSTRACT

Following the emergence of resistant fungal pathogens, silver nanoparticles (AgNPs) biosynthesized by plants have been recognized as promising tools to combat parasitic fungi. This study evaluated the potency of Amaranthus retroflexus in producing AgNPs, followed by testing their antifungal effects. The AgNPs exhibited a maximum absorption at 430 nm through ultraviolet-visible spectroscopy, while the X-ray diffraction indicated that they were crystal in nature. Fourier transform infrared spectroscopy confirmed the conversion of Ag+ ions to AgNPs due to the reduction by capping material of plant extract. The transmission electron microscope analysis further revealed that the AgNPs were spherical ranging from 10 nm to 32 nm in size. The AgNPs at the concentrations of 50, 100, 200, and 400 μg/mL were applied to the growth of plant, mushroom, and human pathogenic fungi. The 50% minimum inhibitory concentrations (MIC50) against Macrophomina phaseolina, Alternaria alternata and Fusarium oxysporum were observed to be 159.80 ± 14.49, 337.09 ± 19.72, and 328.05 ± 13.29 μg/mL, respectively. However, no considerable inhibition was observed regarding Trichoderma harzianum or Geotrichum candidum. These findings may suggest A. retroflexus as a green solution for biosynthesizing AgNPs with potent antifungal activities against plant pathogenic fungi.  相似文献   

19.
Monodisperse silver (Ag) nanoparticles were synthesized by using Parthenium hystrophorus L leaf extract in aqueous media. The synthesized nanoparticles were characterized by using UV-vis spectrophotometer, X-ray diffracto-meter (XRD), transmission electron microscope (TEM), and dynamics light scattering (DLS). Size-dependent antibacterial activities of Ag nanoparticles were tested against Gram negative Pseudomonas aeruginosa and Gram positive Staphylococcus aureus. Ag nanoparticles having 20?±?2?nm size in diameter show maximum zone of inhibition (23?±?2.2?mm) in comparison to 40?nm and 70?nm diameter nanoparticles for Pseudomonas aeruginosa. The zone of inhibition against Staphylococcus aureus were 19?±?1.8?mm, 15?±?1.5?mm and 11?±?1?mm for 20?nm, 40?nm, and 70?nm, respectively. In addition, affect of concentration of 20?nm size Ag nanoparticles on Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus species were also reported and results were compared with 10?µg/ml dose of Gentamicin sulphate. The Parthenium hystrophorus L leaf extract capped 20?±?2?nm Ag nanoparticles (7.5?µg/ml) shows statistically significant antibacterial activity than Gentamicin sulphate (10?µg/ml) against Staphylococcus aureus.  相似文献   

20.
Abstract

Eco-friendly green synthesis of nanoparticles using medicinal plants gained immense importance due to its potential therapeutic uses. In the current study, silver nanoparticles (AgNPs) were synthesized using water extract of Jurinea dolomiaea leaf and root at room temperature. MTT assay was used to study anticancer potential of AgNPs against cervical cancer cell line (HeLa), breast cancer cell lines (MCF-7), and mouse embryonic fibroblast (NIH-3 T3) cell line for toxicity evaluation. The antioxidant potential was evaluated using stable DPPH radicals. In addition, the apoptotic nuclear changes prompted by AgNPs in more susceptible HeLa cells were observed using fluorescence microscope through DAPI and PI staining. Physiochemical properties of biosynthesized AgNPs were characterized using various techniques. AgNPs were formed in very short time and UV–vis spectra showed characteristic absorption peak of AgNPs. SEM and TEM showed spherical shape of AgNPs and XRD revealed their crystalline nature. EDX analysis revealed high percentage of silver in green synthesized AgNPs. FTIR analysis indicated involvement of secondary metabolites in fabrication of AgNPs. In vitro cytotoxic and antioxidant study revealed that herb and biosynthesized AgNPs exhibited significant dose-dependent and time-dependent anticancer and antioxidant potential. Furthermore, study on normal cell line and microscopic analysis of apoptosis revealed that AgNPs exhibited good safety profile as compared to cisplatin and induces significant apoptosis effect. Based on the current findings, it is strongly believe that use of J. dolomiaea offers large scale production of biocompatible AgNPs that can be used as alternative anticancer agents against cancer cell lines tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号