首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
付丽华  贾德民  刘卅 《功能材料》2005,36(10):1638-1644
首次将插层纳米复合技术与互穿聚合物网络(IPN)技术相结合,通过同步插层聚合法制备了聚氨酯/聚甲基丙烯酸甲酯/有机蒙脱土(PU/PMMA/OMMT)纳米复合材料.XRD、SEM、TGA等研究表明,在聚氨酯/有机蒙脱土(PU/OMMT)体系中蒙脱土以40~700 nm的团聚体不均匀地分散在聚氨酯基体中,且部分蒙脱土被插层,其层间距增加了0.95nm,体系为插层型纳米复合材料.PU/PMMA/OMMT体系中蒙脱土以20~80nm的粒子分布于聚合物基体中,且蒙脱土的插层效果显著,是PU/OMMT体系的2.5倍,形成了插层型纳米复合材料.同时,蒙脱土的加入使得聚氨酯和聚甲基丙烯酸甲酯的互穿聚合物网络(PU/PMMA-IPN)体系中PU相与PMMA相间相分离更明显,塑性相畴粒子尺寸显著增加,且各相中两组分相互作用加强,分布更均匀.PU/PMMA/OMMT纳米复合材料的热稳定性高于其他材料.同时对其力学性能进行了研究,发现其力学性能明显优于聚氨酯、基于聚氨酯和PU/PMMA-IPN和PU/OMMT纳米复合材料.  相似文献   

2.
《Composites Part B》2004,35(3):245-249
Single wall carbon nanotubes, multiwall carbon nanotubes, as well as carbon nanofibers (CNF) are being used for reinforcing polymer matrices. In this study, poly(methyl methacrylate) (PMMA) nanocomposites have been processed by melt blending, containing two different grades (PR-21-PS and PR-24-PS) of CNF manufactured by Applied Sciences Inc. The amount of nanofibers used was 5 and 10% by weight, respectively. The PMMA/CNF composites were processed into 4 mm diameter rods and 60 μm diameter fibers using the small-scale melt processing fiber spinning equipment. At 5 wt% CNF, composite rods as well as fibers show over 50% improvement in axial tensile modulus as compared to the control PMMA rod and fibers, respectively. The reinforcement efficiency decreased at 10 wt% CNFs. The PMMA/CNF nanocomposite fibers also show enhanced thermal stability, significantly reduced shrinkage and enhanced modulus retention with temperature, as well as improved compressive strength. CNF reinforcement efficiency has been analyzed using the modified Cox model.  相似文献   

3.
聚氯乙烯/蒙脱土纳米复合材料的开发及研究   总被引:11,自引:0,他引:11  
利用DSC的方法研究了纳米复合材料的玻璃化转变温度 ,测试了复合材料的力学性能 ,研究发现复合材料的力学性能与其玻璃化转变温度成线性关系 ,并随玻璃化转变温度的降低其力学性能提高。对复合材料进行热处理后 ,发现有机蒙脱土对聚氯乙烯的热降解引起的力学性能下降具有一定的抑制作用。  相似文献   

4.
聚碳酸亚丙酯/凹凸棒纳米复合材料制备与热稳定性研究   总被引:2,自引:0,他引:2  
通过溶液共混法制备了聚碳酸亚丙酯/凹凸棒纳米复合材料。利用FT-IR、XRD和SEM表征手段研究了复合材料的结构。研究表明有机改性的凹凸棒在聚碳酸亚丙酯中分散均匀,平均粒径为70nm。利用TG研究了聚碳酸亚丙酯/凹凸棒纳米复合材料的热稳定性,结果发现纳米尺寸凹凸棒的引入能够显著提高聚碳酸亚丙酯的热稳定性,其中凹凸棒含量为0.5%的复合材料热稳定性最好,其5%、50%和最大热分解温度分别为273℃、291℃和289℃,相比PPC分别提高了63℃、53℃和52℃。  相似文献   

5.
The thermal conductivity and heat capacity per unit volume of poly(methyl methacrylate) (25 and 350 kg · mol in molecular weight) have been measured in the temperature range 155–358 K at pressures up to 2 GPa using the transient hot-wire method. The bulk modulus has been measured up to 1.0 GPa at 294 K and yielded a constant valueg = 3.4 ± 0.3 for the Bridgman parameter. No dependence on molecular weight could be detected in the properties we measured.  相似文献   

6.
Nanocomposites composed of poly(ethylene terephthalate) (PET) filled with calcium carbonate particles of nanometer scale were prepared by polymerizing the polyester in the presence of the nanosized fillers. Besides plain calcium carbonate, carbonate nanoparticles coated with stearic acid were also used, in order to improve the compatibility between the polymeric matrix and nanofillers. Morphological analysis evidenced a good dispersion of both the nanopowders into the PET matrix, especially in the case of coated calcium carbonate. The strong interfacial adhesion between the two phases is also responsible for the increase of the glass transition and melting temperatures in the nanocomposites compared to plain PET. Finally, non-isothermal crystallization studies revealed that the coated CaCO3 is a good nucleating agent for PET. Analysis of non-isothermal crystallization data with the Ozawa theory was successful for plain PET and PET/un-CaCO3, but this method failed to describe the dynamic solidification of the PET/c-CaCO3 nanocomposite.  相似文献   

7.
《Composites Part B》2004,35(2):173-178
Single wall carbon nanotubes, multi-wall carbon nanotubes, as well as carbon nano fibers (CNF) are being used for reinforcing polymer matrices. In this study, poly(methyl methacrylate) (PMMA) nanocomposites have been processed by melt blending, containing two different grades (PR-21-PS and PR-24-PS) of CNF manufactured by Applied Sciences Inc. The amount of nano fibers used was 5 and 10 wt%, respectively. The PMMA/CNF composites were processed into 4 mm diameter rods and 60 μm diameter fibers using small-scale melt spinning equipment. At 5 wt% CNF, composite rods as well as fibers show over 50% improvement in axial tensile modulus as compared to the control PMMA rod and fibers, respectively. The reinforcement efficiency decreased at 10 wt% CNF. The PMMA/CNF nanocomposite fibers also show enhanced thermal stability, significantly reduced shrinkage and enhanced modulus retention with temperature, as well as improved compressive strength. The CNF reinforcement efficiency has been analyzed using the modified Cox model.  相似文献   

8.
聚甲基丙烯酸甲酯/二氧化硅(PMMA/Si O_2)复合材料可以通过简便的单体浇铸、本体聚合方法制备,二氧化硅用硅烷偶联剂3-(异丁烯酰氧)丙基三甲氧基硅烷(γ-MPS)进行表面修饰,并用红外光谱表征其甲苯抽提后的组成。当加入量为11.76%时,PMMA/Si O_2复合材料的导热率达到0.23 W/(m·K),比基体PMMA提高了27.78%。用PMMA红外光谱的侧甲基弯曲振动峰(δCH3)与羰基(νC=O)的伸缩振动峰比值可以表示PMMA大分子的偶合终止与歧化终止的比例,随着二氧化硅含量的增加,歧化终止比例升高,从而使PMMA/Si O_2复合材料的热稳定性提高,与热重分析结果一致。  相似文献   

9.
Poly(methyl methacrylate) (PMMA)/dodecylamine templated lamellar aluminophosphate (DDA-LAP) intercalated nanocomposites are prepared by in situ bulk polymerization of MMA. The intercalated structure is characterized. With the intercalation of DDA-LAP in PMMA matrix, the glass-transition temperatures of nanocomposites (Tg) are increased. The nanocomposites obtained keep relatively high transparency in optical property and have a significant improvement in mechanical properties and thermal stability. The mechanism for the properties enhancement is investigated. The strong interfacial interaction between the aluminophosphate layers and the PMMA chains, the homogeneously distribution and the graphitized char formation during heating are three key roles for the properties improvement.  相似文献   

10.
11.
The preparation, characterization, and properties of poly(methyl methacrylate) (PMMA)/multi-walled carbon nanotubes (MWCNTs) nanocomposites are described. Nanocomposites have been prepared by melt-blending in a batch mixer. Both unmodified and surface modified MWCNTs have been used for the nanocomposites preparation. Using both unmodified and modified MWCNTs, the effect of surface modification in nanocomposites is investigated by focusing on three major aspects: dispersion characteristics, mechanical properties, and electrical conductivity measurements. Dispersion of the MWCNTs in the PMMA matrix is examined by scanning and transmission electron microscopy that revealed a homogeneous distribution-dispersion of MWCNTs in the PMMA matrix for both unmodified and modified MWCNTs. Thermomechanical behavior is studied by dynamic mechanical analyzer and results showed a substantial improvement in the mechanical properties of PMMA in conjunction to an increase in the elastic behavior. The tensile properties of neat PMMA moderately improved after nanocomposites preparation with both modified and unmodified MWCNTs, however, electrical conductivity of neat PMMA significantly improved after nanocomposites preparation with 2 wt% unmodified MWCNTs. For example, the through plane conductivity increased from 3.6 x 10(-12) S x cm(-1) for neat PMMA to 3.6 x 10(-9) S x cm(-1) for nanocomposite. The various property measurements have been conducted and results have shown that, in overall, surface modifications have very little or no effect on final properties of neat PMMA.  相似文献   

12.
利用微层共挤出技术制得不同层数(2,16,64层)的聚偏氟乙烯(PVDF)/聚甲基丙烯酸甲酯(PMMA)交替多层材料,通过偏光显微镜、垂直燃烧测试、热失重分析、红外光谱分析、微型量热测试研究了层数的变化对体系热分解和热释放行为的影响。结果表明,PVDF层与PMMA层沿层状样品的厚度方向交替排列,层结构明显,层界面清晰,随着层数的增加,层界面数增加,材料的垂直燃烧行为几乎不变,但表现出更高的热稳定性;高层数样品中热稳定性优异的PVDF层对易热解的PMMA层保护作用增强,且在热释放过程中,更多的层界面为PVDF炭层的形成提供了更丰富的空间,使材料的热释放速率减小,总热释放降低。  相似文献   

13.
Novel ternary nanocomposite trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania optical films were successfully prepared through a nonaqueous in situ sol–gel method. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). PMMA/ZrO2–TiO2 incorporating networks formed from alcoholysis of poly(MMA-co-MSMA), zirconium n-butoxide and titanium isoproproxide. The structure, morphology and property of the obtained nanocomposite films were investigated by X-ray photoelectron spectra, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, scanning probe microscopy, thermogravimetric analyses, UV–vis spectrum and spectro-ellipsometer. The nanoparticle size, roughness, thermal stability, UV-shielding property, and refractive index of nanocomposite films increase with the increasing of inorganic contents. The formation mechanism and reason of such improvements were examined and interpreted in a theoretical model. The nanocomposite films possess interesting properties in thermal stability and optical response due to the uniform incorporating networks between organic polymer chains and inorganic clusters.  相似文献   

14.
Electrical and rheological properties of nanocomposites based on poly(methyl methacrylate) (PMMA) and multiwalled carbon nanotube (MWCNT) were studied from view points of double percolation by adding crosslinked methyl methacrylate-butadiene-styrene (MBS) copolymer particles to lower percolation threshold concentration of MWCNTs. It was found that the critical concentrations of MWCNTs for the percolation in the nanocomposites decrease and then increase with increasing the MBS contents of the nanocomposites. It is postulated that the addition of MBS at low concentrations results in double percolation of MWCNT and the significant decrease of critical concentration for the percolations. However, adding MBS particles in large amounts results in limited space for the distribution of MWCNTs and less efficient dispersion of the MWCNTs and the increase of the critical concentrations of MWCNTs for the percolations. Rheological properties and change of T(g)s reflect large interfacial areas in the well dispersed nanocomposite and were also interpreted to support the speculations for the effects of MBS contents and MWCNT concentrations of PMMA/MWCNT nanocomposites.  相似文献   

15.
The composites of poly(methyl methacrylate) and polypyrrole (PMMA/PPy) were prepared by a chemical oxidation of pyrrole in a PMMA latex medium resulting in a network like structure of polypyrrole embedded in the insulating polymer matrix. Water was used as the dispersion medium. The content of polypyrrole was determined by elemental analysis as varying from 0.25 wt.% to 10 wt.%. The electrical conductivity of prepared composites depends on the concentration of polypyrrole and reached values of between 1 × 10– 9 S/cm to 0.1 S/cm The surface of powder form of PMMA/PPy composites was characterized by X-ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM). The antistatic properties of compression moulding form of composites were tested.  相似文献   

16.
Hydroxyapatite/poly(methyl methacrylate) (HAp/PMMA) and calcium silicate/poly(methyl methacrylate) (CS/PMMA) composites were prepared by interpenetrating bulk polymerization of methyl methacrylate (MMA) monomer in porous structures of HAp and CS. The porous HAp and CS templates were prepared by mixing their calcined powders with poly(vinyl alcohol) (PVA) solution, shaping by uniaxial pressing and then firing at 1,100 °C for HAp and 900 °C for CS. The templates were soaked in the solution mixture of MMA monomer and 0.1 mol% of benzoyl peroxide (BPO) for 24 h. The pre-composites were then bulk polymerized at 85 °C for 24 h under nitrogen atmosphere. The microstructures of the composites showed the interpenetrating of PMMA into the porous HAp and CS structures. Thermogravimetric analysis indicated that the PMMA content in the HAp/PMMA and CS/PMMA composites were 13 and 26 wt%, respectively. Weight average molecular weights ( ) of PMMA were about 491,000 for HAp/PMMA composites and about 348,000 for CS/PMMA composites. Compressive strengths of these composites were about 90–131 MPa in which they were significantly higher than their starting porous templates.  相似文献   

17.
Poly(methyl methacrylate) (PMMA)/graphene nanocomposites were prepared by in situ emulsion polymerization. Raman and Fourier transform infrared spectra showed that PMMA polymer contained partially reduced graphite oxide. Dynamic mechanical analysis and differential scanning calorimetry analysis showed that graphene in the PMMA matrix acted as reinforcing filler; it enhanced the storage moduli and glass transition temperatures of the nanocomposites. Thermogravimetric analysis showed that the thermal stability of the nanocomposites increased by ca. 35 °C. The electrical conductivity of nanocomposite with 3 wt.% graphite oxide was 1.5 S m−1 at room temperature.  相似文献   

18.
In this work, the feasibility of friction spot welding (FSpW) of a commercial poly(methyl methacrylate) (PMMA) GS grade and a PMMA 6 N/2 wt% silica (SiO2) nanocomposite was investigated. Single-lap joints welded at rotational speeds of 1000, 2000 and 3000 rpm were produced. The analysis of the joint microstructure and material flow pattern indicated that joints could be produced using all of the tested welding conditions. However, the joint produced at 1000 rpm displayed sharp weld lines (weak links), indicating insufficient heat input, while the welds produced at 3000 rpm displayed excessive plastic deformation (bulging of the bottom plate), volumetric defects and a lack of material mixing in the welded area, associated with higher heat input. The weld produced at a rotational speed of 2000 rpm resulted in improved material mixing, which was indicated by the absence of weld lines and volumetric defects due to the more correct heat input. This welding condition was selected for further mechanical testing. Lap shear testing of PMMA GS/PMMA 6 N/2 wt% SiO2 nanocomposite single lap joints welded at 2000 rpm resulted in an average ultimate lap shear strength of 3.9 ± 0.05 MPa. These weld strength values are equal to or better than those obtained using state-of-the-art welding techniques for PMMA materials, thereby demonstrating the potential of friction spot welding for thermoplastic nanocomposites.  相似文献   

19.
20.
Stable poly(3-methylthiophene)/WO3 (PMeT/WO3) nanocomposite films have been prepared by a two-step electrochemical method. At first the WO3 film was grown by a potentiostatic method in tungsten electrolytes, and then PMeT was deposited on the WO3 film by a potentiodynamic polymerisation method in 2?M solutions of 3-methylthiophene in 1-butyl-3-metyllimidazolium hexafluorophosphate ([BMIM]PF6). The products are characterised in detail by multiform techniques: scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS) and Fourier-transform infrared spectroscopies (FTIR). The obtained PMeT/WO3 film displays a significant enhancement of electrochemical activity and a higher stability than that of pure PMeT films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号