共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
详细介绍了氮化硼纳米管自发现以来的研究情况,阐述了氮化硼纳米管的结构与性质,对目前已有的合成方法进行了归类与总结,同时分析了各自的优缺点,概述了其应用研究的进展情况,并提出了今后研究和应用的发展方向. 相似文献
3.
D. V. Shtansky Y. Yamada-Takamura T. Yoshida Y. Ikuhara 《Science and Technology of Advanced Materials》2000,1(4):1046
The mechanism and the crystallography of the nucleation and growth of cubic boron nitride (c-BN) films deposited on 100-oriented silicon substrate by RF bias sputtering have been studied by means of cross-sectional high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Both methods provide experimental information showing no sp2-bonded BN layer formation in the subsurface region of c-BN phase. This is clear evidence for layer-by-layer homoepitaxial growth of cubic boron nitride without graphitic monolayers in the near-surface region of the film. The turbostratic boron nitride (t-BN) consists of thin sub-layers, 0.5–2 nm thick, growing in such a way that a sub-layer normal is almost parallel to the growth direction. t-BN also comprises a large volume fraction of the grain boundaries with high interface energies. The present result and the finding by Shtansky et al. [Acta Mater. 48, 3745 (2000)], who showed that an individual sub-layer consists of parallel lamellae in both the hexagonal (h-BN) and rhombohedral (r-BN) configurations, demonstrate that high intrinsic stress in the films is due to the complex structure of sp2-bonded BN. The crystallography of c-BN films indicates heteroepitaxial nucleation of cubic phase on the graphitic BN structural precursor. The present results are consistent with stress-induced c-BN formation. 相似文献
4.
Wei-Li Wang Jian-Qiang Bi Wei-Xing Sun Hui-Ling Zhu Jiu-Jiao Xu Man-Tong Zhao Yu-Jun Bai 《Materials Chemistry and Physics》2010
Boron nitride (BN) coating on the surface of carbon nanotubes (CNTs) was synthesized by the direct reaction of NaBH4 and NH4Cl in the temperature range of 500–600 °C. X-ray diffraction, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) confirm the formation of BN coating. It is revealed that the BN coating follows the shape of CNTS without damaging the surface of CNTs, and the elements B and N distribute homogenously along the whole CNTs without chemical bonds between carbon and BN layers. Besides, the oxidation resistance of the CNTs improved a lot after being coated with BN. 相似文献
5.
Synthesis and growth of multiwall boron nitride nanotubes (BNNTs) under the B and ZrO2 seed system in the milling–annealing process were investigated. BNNTs were synthesized by annealing a mechanically activated boron powder under nitrogen environment. We explored the aspects of the mechanical activation energy transferred to milled crystalline boron powder producing structural disorder and borothermal reaction of the ZrO2 seed particles on the synthesis of BNNTs during annealing. Under these circumstances, the chemical reaction of amorphous boron coated on the seed nanoparticles with nitrogen synthesizing amorphous BN could be enhanced. It was found that amorphous BN was crystallized to the layer structure and then grown to multiwall BNNTs during annealing. Especially, bamboo-type multiwall BNNTs were mostly produced and grown to the tail-side of the nanotube not to the round head-side. Open gaps with ∼0.3 nm of the bamboo side walls of BNNTs were also observed. Based on these understandings, it might be possible to produce bamboo-type multiwall BNNTs by optimization of the structure and shape of boron coat on the seed nanoparticles. 相似文献
6.
The data existing in the literature about the deposition of cubic boron nitride thin films were reviewed critically in order to establish the parameter spaces of c-BN nucleation and growth. The ion energy Ei, the flux ratio F (=incoming ions/incoming boron atoms), the ion mass mi, (or the ratio Ar/N2, respectively), and the substrate temperature Ts, had already been identified as the decisive parameters which are, however, interdependent. Earlier data collections on c-BN deposition had shown that, irrespective of the deposition technique used, a well-defined c-BN region exists in the F/Ei parameter space, in which the deposition of c-BN is possible. Similar regions exist in the F/mi and F/Ts parameter spaces. The present collection extends these older diagrams considerably, especially to the low energy region. From this extention it can be concluded that the momentum transfer concepts proposed in the literature fail to explain the data. Furthermore, the older collections were considered valid for nucleation and growth likewise. However, in recent years data have been published showing that the boundaries of the c-BN regions are different for nucleation and growth. After successful nucleation, subsequent growth can occur either at reduced ion bombardment (either energy or flux ratio or ion mass) and also at reduced temperatures. The existing data for this parameter reduction have been collected in this paper. It will be shown that the growth depends in a similar way as the nucleation on the (interdependent) ion bombardment parameters but no longer on temperature. This means that the nucleation and growth of c-BN are based on different, although in both cases ion-induced, mechanisms. 相似文献
7.
Isadora BerlangaRubén Mas-Ballesté Félix ZamoraJesús González-Julián Manuel Belmonte 《Materials Letters》2011,65(10):1479-1481
Carbon nanotubes were synthesized on silicon nitride substrates by thermal chemical vapour deposition using an iron precursor catalyst. The nanotubes were characterized by AFM, FESEM, TEM and micro-Raman spectroscopy. The surface topography of the substrate, dense and flat or porous and rough, controlled the catalyst distribution and carbon nanotubes growth. Flat surfaces led to the synthesis of single-walled carbon nanotubes, whereas the porous ones promoted the growth of multi-walled carbon nanotubes of 60 nm diameter. These nanotubes preferentially grew on the porous sites, exhibiting a good substrate-nanotube interface. 相似文献
8.
Boron nitride films on diamond buffer layers of varying grain size, surface roughness and crystallinity are deposited by the reaction of B2H6 and NH3 in a mixture of H2 and Ar via microwave plasma-assisted chemical vapor deposition. Various forms of boron nitride, including amorphous α-BN, hexagonal h-BN, turbostratic t-BN, rhombohedral r-BN, explosion E-BN, wurzitic w-BN and cubic c-BN, are detected in the BN films grown on different diamond buffer layers at varying distances from the interface of diamond and BN layers. The c-BN content in the BN films is inversely proportional to the surface roughness of the diamond buffer layers. Cubic boron nitride can directly grow on smooth nanocrystalline diamond films, while precursor layers consisting of various sp2-bonded BN phases are formed prior to the growth of c-BN film on rough microcrystalline diamond films. 相似文献
9.
A. Ratna Phani 《Bulletin of Materials Science》1994,17(3):219-224
For the first time, thin films of boron nitride were deposited by chemical vapour deposition on to polished silicon and other
metal substrates using the inorganic compound H3BNH3 (aminodiborane) and ammonia as carrier gas. The substrate temperature was varied from 400 to 600°C. The films were chemically
inert and adherent to the substrates. The FTIR spectrum of the film showed B-N-B absorption at 800 cm−1, B-N stretching at 1056 cm−1, and also a weak absorption at 1340cm−1 corresponding to B-N-B bending vibration. Deposited films also exhibited X-ray diffraction pattern with interplanar spacing
with (002) plane of hexagonal boron nitride. 相似文献
10.
Edgar D. Rivera-Tapia Cristian A. Fajardo Álvaro J. Ávila-Vega Carlos F. Ávila Francisco M. Sánchez-Arévalo Iván Chango-Villacís 《Fullerenes, Nanotubes and Carbon Nanostructures》2016,24(1):8-12
A solid state synthesis of boron carbon nitride oxide (BCNO) material was carried out starting from urea and boric acid treated at 600°C. The X-ray diffraction pattern corresponded to amorphous BCNO with an interlayer distance of 3.49 Å. The material had a layered structure similar to that of graphite and hexagonal boron nitride (h-BN). Infrared spectroscopy (IR) showed bands which were similar to those typical of BN and carbon nitride. The presence of boron was also confirmed by energy dispersive spectroscopy in an amount compatible with the IR spectrum. The spectra obtained by X-ray photoelectron spectroscopy (XPS) corresponded to those of a BCNO family with a considerable content of oxygen too. The optical band gap was estimated to be 3.22 eV, typical of a wide band-gap semiconductor. The particle size was very dispersed from micro to nanosize. The material dispersed in polar solvents formed stable suspensions due to the presence of hydroxyl groups. 相似文献
11.
V. T. Golovchan 《Journal of Superhard Materials》2009,31(3):165-171
An analytical algorithm for the calculation of stresses in polycrystals of boron nitride dense modifications has been described. The relations established between the tensile and compression strength have been based on the Griffith fracture hypothesis for a biaxial stressed state. The effect has been taken into account of technological residual thermal stresses, which are formed in wurtzitic boron nitride (wBN) grains in sintering at the stage of cooling because of the thermal expansion anisotropy, on the strength of wBN. 相似文献
12.
Various PVD and plasma-assisted CVD methods presently used for the deposition of cubic boron nitride (c-BN) thin films demand adequate conditions relating to ion bombardment of growing films, growth temperature, film stoichiometry, etc. The deposition conditions, often appearing rather apparatus-dependent, can be well categorized according to the fundamental parameters of bombarding ions as well as condensing neutral particles, including their energy and flux ratio, and a few of others like ion mass and incident angle. According to these parameters, various surface kinetic processes and their consequences are discussed particularly in connection with the resulting film phases and stress. Typical c-BN films are known for their extremely high compressive stress and poor adhesion as a result of intensive ion bombardment during deposition. Individual measures attempting to relieve this detrimental stress are briefly summarized. The present paper focuses on magnetron-sputtered, c-BN-based metastable films and nanocomposite films with considerably reduced internal stress in comparison to the usual “pure” c-BN films. Two examples will be shown, namely c-BN/a-C nanocomposite and c-BN:O metastable films, including their deposition details, structure and composition characterization, and mechanical properties. Also illustrated is a growth scheme tailored for the deposition of thick, adhered, cubic-phase dominated, superhard c-BN:O films above 2 µm on silicon substrates. 相似文献
13.
14.
C S Menon 《Bulletin of Materials Science》1985,7(2):91-93
Third order elastic constants of hexagonal Boron Nitride have been evaluated using the Lannard-Jones potential. The results
obtained are presented and compared with the only available measurement ofC
333 for this material. 相似文献
15.
Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications.Here,we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu twin crystals.It was found that h-BN nucleated and grew preferentially and simultaneously on the narrow twin crystal strips present in the Cu substrates.The density functional theory calculations revealed that the introduction of oxygen could efficiently tune the selectivity.This is because of the reduction in the dehydrogenation barrier of the precursor molecules by the introduction of oxygen.Our findings throw light on the direct growth of functional h-BN nanoribbons on nano-twinned crystal strips and switching of the growth behavior of h-BN films by oxygen. 相似文献
16.
Ning Guo Jinquan Wei Yi Jia Huanhuan Sun Yuhang Wang Kehan Zhao Xiaolan Shi Liuwan Zhang Xinming Li Anyuan Cao Hongwei Zhu Kunlin Wang Dehai Wu 《Nano Research》2013,6(8):602-610
Highly reliable and bendable dielectrics are desired in flexible or bendable electronic devices for future applications. Hexagonal boron nitride (h-BN) can be used as bendable dielectric due to its wide band gap. Here, we fabricate high quality h-BN films with controllable thickness by a low pressure chemical vapor deposition method. We demonstrate a parallel-plate capacitor using h-BN film as the dielectric. The h-BN capacitors are reliable with a high breakdown field strength of -9.0 MV/cm. Tunneling current across the h-BN film is inversely exponential to the thickness of dielectric, which makes the capacitance drop significantly. The h-BN capacitor shows a best specific capacitance of 6.8 F/cm^2, which is one order of magnitude higher than the calculated value. 相似文献
17.
Laiping ZhangJilin Wang Yunle Gu Guowei ZhaoQiongli Qian Jie LiXinye Pan Zhanhui Zhang 《Materials Letters》2012,67(1):17-20
The high-pure bamboo-like boron nitride (BN) nanotubes with high yield were synthesized via an effective chemical vapor deposition method by annealing porous precursor under NH3 atmosphere at 1150 °C. The porous precursor was readily prepared by self-propagation high temperature synthesis (SHS) method. The as-synthesized BN nanotubes were characterized by SEM, TEM, HRTEM, XRD, Raman and FTIR spectroscopy. The results indicate these nanotubes have bamboo-like structures with an average diameter of about 90 nm and length of more than 10 μm. Nanotube content is estimated as approximately 90 wt.% according to the statistical analyses by SEM and TEM. Moreover, the reaction mechanism for the as-synthesized BN nanotubes is proposed. 相似文献
18.
《Virtual and Physical Prototyping》2013,8(4):253-258
Nature creates composite materials with complex hierarchical structures that possess impressive mechanical properties enhancement capabilities. An approach to improve mechanical properties of conventional composites is to mimic the biological material structured ‘hard’ core and ‘soft’ matrix system. This would allow the efficient transfer of load stress, dissipation of energy and resistance to cracking in the composite. In the current study, reactive spark plasma sintering (SPS) of boron carbide B4C was carried out in a nitrogen N2 gas environment. The process created a unique core-shell structured material with the potential to form a high impact-resistant composite. Transmission electron microscopy observation of nitrided-B4C revealed the encapsulation of B4C grains by nano-layers of hexagonal-boron nitride (h-BN). The effect of the h-BN contents on hardness were measured using micro- and nano-indentation. Commercially available h-BN was also mechanically mixed and sintered with B4C to compare the effectiveness of nitrided B4C. Results have shown that nitrided B4C has a higher hardness value and the optimum content of h-BN from nitridation was 0.4%wt with the highest nano-indentation hardness of 56.7 GPa. The high hardness was attributed to the h-BN matrix situated between the B4C grain boundaries which provided a transitional region for effective redistribution of the stress in the material. 相似文献
19.
20.
Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process 总被引:1,自引:0,他引:1
Boron nitride nanotubes were synthesized from boron oxide by high-energy ball milling and annealing method. The diameter of the nanotubes is in the range of 20-200 nm. The nanotubes show a bamboo-like structure and cylindrical-like structure under low magnification. The shorter bamboo nodes with distinct knots were observed for the bamboo-like nanotubes with larger diameters and the knots can also occasionally be observed in the cylindrical-like BN nanotubes with smaller diameters under high magnification. Al and Si were found to be catalytic materials responsible for the formation of BN nanotubes besides the metallic particles containing Fe, Ni and Cr. 相似文献