首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft copolymerization of acrylonitrile, methyl methacrylate, and vinyl acetate on bleached holocellulose initiated by ceric ions in aqueous medium was studied at 29°C. The extent of graft copolymer formation was poly(methyl methacrylate) > polyacrylonitrile > poly(vinyl acetate), indicating the influence of polarity of monomer on graft copolymerization. It was found that, although the molecular weights of the grafted polyacrylonitrile copolymer were lower than the values obtained for poly(methyl methacrylate), the latter was less frequently incorporated on the cellulosic backbone polymer than the polyacrylonitrile grafts. The marked reductions in graft level associated with thiolation of the cellulosic material suggest that hydrogen abstraction reactions from carbon atom carrying hydroxyl groups may not be important in graft copolymer formation.  相似文献   

2.
Graft copolymers of acrylonitrile, ethyl acrylate, methyl acrylate, ethyl methacrylate and methyl methacrylate and of acrylonitrile/ethyl methacrylate and acrylonitrile/methyl methacrylate monomer mixtures on carboxymethylcellulose (degree of substitution 0.4–0.5) were prepared by use of ceric ion initiator in aqueous medium. The extent of graft polymer formation was measured in terms of graft level, molecular weight of grafted polymer chains and frequency of grafting as function of ceric ion concentration. It was found that at comparable reaction conditions, the molecular weight and frequency of grafting were not of the same order of magnitude. For the monomer mixtures, the copolymer compositions obtained from the total nitrogen content of the acrylonitrile/alkyl methacrylate copolymer samples showed that a relativity low amount of the acrylonitrile monomeric units were incorporated into the graft copolymer even at high acrylonitrile content of the feed.  相似文献   

3.
Graft polymerizations of vinyl acetate onto granular corn starch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinylacetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. However, over half of the polymer was present as ungrafted poly-(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficiency. However, grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate-methyl methacrylate was carried out near 0°C, although conversion of monomers to polymer was low and grafted polymer contained 40-50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch–g–poly(vinyl acetate) to starch–g–poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch–g–poly(vinyl alcohol) in hot water was less than 50%; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized starch for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch–g–poly(vinyl acetate) with about 35% add-on, and a grafting efficiency of about 40% was obtained. A film cast from a starch–g–poly(vinyl alcohol) copolymer in which homopolymer was not removed exhibited a higher ultimate tensile strength than a comparable physical mixture of starch and poly(vinyl alcohol).  相似文献   

4.
Thermal degradation of cotton, mercerized cotton, cotton grafted with vinyl acetate-methyl acrylate mixtures at different compositions, and mercerized cotton grafted with vinyl acetate–methyl acrylate mixture at a composition of 60 : 40 has been investigated using the techniques of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) in nitrogen. The kinetic parameters E, n, and A have been obtained following several methods of thermogravimetric analyses. The mercerization shows a little effect upon thermic properties of cotton cellulose, making cotton thermally more stable. Graft copolymerization of vinyl acetate-methyl acrylate mixture makes cotton thermally less stable if the composition of the copolymer grafted is 100, 90, and 70 mol % VA, while in the case of cellulose graft copolymers with compositions of VA–MA of 80 : 20, 20 : 80, 5 : 95, and 0 : 100 the thermal stability is higher than that of original cotton. The thermal stability of the mercerized cotton grafted with vinyl acetate-methyl acrylate mixture with a composition of 60 : 40 depends on the percent grafting yield. The thermal stability of mercerized cotton grafted with the monomer mixture is higher than that of cotton grafted with that monomer mixture. The degradation of cellulose and cellulose graft copolymers is complex as is shown by DTA thermograms and kinetic parameters.  相似文献   

5.
Effects of water contained in the sample, the type of sensitizer, and the nature of vinyl monomer on vapor phase photografting on cellulose were investigated at 60°C. The grafting was enhanced by the water contained in the cellulose sample, resulting in an increased percent grafting with increasing the quantity of water. The use of sensitizers such as ferric chloride, ferrous sulfate, ceric ammonium nitrate, hydrogen peroxide, benzophenone, and sodium anthraquinone-2,7-disulfonate led to accelerated graftings. However, the maximum grafting was observed at an optimum quantity of sensitizer for each sensitized system, and the formation of grafted polymer was restricted by the use of sensitizer beyond the quantity. Ferric chloride and hydrogen peroxide exhibited higher activities among the sensitizers. With respect to the nature of monomer, methyl methacrylate, acrylic acid, methacrylic acid, and acrylonitrile were observed to be introduced into cellulose substrate by the vapor phase photografting, though no initiation was recorded for styrene and N-vinylpyrrolidone. However, the latter monomers were introduced by using monomer mixtures with acrylonitrile, affording a maximum percent grafting at a certain monomer composition.  相似文献   

6.
Graft copolymers of acrylonitrile (ACN), methyl methacrylate (MMA), and their mixtures on carboxy methyl cellulose (d.S 0.4–0.5) were prepared by the use of ceric ion initiator in aqueous medium. The graft copolymers were characterized by IR spectroscopy. The extent of graft copolymerization of ACN and MMA was measured in terms of graft level, molecular weight of grafted polymer chains, and the frequency of grafting as functions of ceric ion concentration. It was found that at comparable reaction conditions, the molecular weight of the grafted polymer chains and the frequency of grafting were not of the same order of magnitude. For the monomer mixtures, the copolymer compositions obtained from the total nitrogen contents of the copolymer samples showed that a disproportionately low amount of ACN monomeric units were incorporated into the graft copolymer, even at high ACN content of the feed. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The effect of dose, dose rate, monomer type, and monomer concentration on the water transport behavior in grafted cellulose pulp and hand sheets was studied. At low dose rates, grafting rates of styrene onto wood pulp were less with hand sheets than with the pulp itself. Grafting was also found to be decreased by increasing the dose rate. Grafting mixtures of styrene and acrylonitrile gave better yields than styrene alone. Excellent grafting yields were obtained by treating the pulp or hand sheets with water before adding vinyl monomers. In this way, solvents such as dioxane could be eliminated from the grafting mixture. The hand sheets, grafted with mixtures of acrylonitrile and styrene, had good mechanical properties although less than the corresponding ungrafted sheets. Grafting decreased the moisture regain in pulp and hand sheets. Gamma irradiation of wood pulp under ambient conditions without additives reduced the water sorption considerably.  相似文献   

8.
Thiol starches of degree of substitution (D.S.) 0.005–0.162 were prepared by displacing starch tosyloxy groups with xanthate and treating the resulting xanthate esters with either sodium hydroxide or sodium borohydride. Acrylonitrile, styrene, acrylamide, acrylic acid, and dimethylaminoethyl methacrylate were grafted onto the thiol starches with hydrogen peroxide as initiator. The peroxide caused both grafting of monomer and coupling of thiol groups to disulfide. Treating graft copolymers with sodium borohydride regenerated thiol groups from disulfide groups so that the grafting sequence could be repeated. By regenerating the thiol groups and repeating the grafting steps, high add-on and high-frequency starch graft copolymers were prepared. During four grafting sequences, acrylonitrile reacted with D.S. 0.162 thiol starch to give graft copolymers that contained increasing amounts of polyacrylonitrile (46.0–66.5%). Grafting frequency increased from 183 to 71 anhydroglucose units (AGU)/graft, while molecular weights of the grafted chains ranged between 20,000 and 25,200. The final product was hydrolyzed with potassium hydroxide solution to a copolymer, which absorbed up to 400 ml water per gram. Styrene was grafted onto thiol starch to give products containing 34.4–69.5% polystyrene with 986–3520 AGU/graft and having molecular weights of grafted chains between 276,000 and 364,000. Graft copolymers containing 48.9% polyacrylamide, 21.2% poly(acrylic acid), and 77.7% poly(2-methacryloyloxyethyldimethylammonium acetate) were obtained under similar conditions.  相似文献   

9.
Grafting of vinyl monomers onto cellulose-thiocarbamate was carried out using ceric ammonium sulfate (CAS) as an initiator. The graft yield was found to depend on the amount of thiocarbamate groups, initiator, and monomer concentrations as well as temperature. The graft yield increased with increasing (CAS) concentration. The reactivity of vinyl monomers studied followed the order ethyl acrylate>acrylonitrile. A comparison between the graft yields obtained with the modified cullulose indicated that cellulose thiocarbamates having less than 1.1% nitrogen showed lower graft yields than the unmodified cellulose. Above this, cellulose thiocarbamate was much more amenable to grafting than the unmodified cellulose. The grafted cellulose thiocarbamates exhibited high antifungal activity and had no effect on gram-negative, gram-positive bacteria and yeast. The maximum zone of inhibition was obtained after grafting with 2 h which resulted in 43 and 50% add-on polymer in the cases of acrylonitrile and ethyl acrylate, respectively. Grafted cellulose thiocarbamates with acrylonitrile had higher potency for antifungal activity than that grafted with ethyl acrylate.  相似文献   

10.
It has been previously demonstrated that free radicals are produced in the delignification of wood. These free radicals can be utilized to initiate grafting of vinyl polymers to the wood pulp. This simultaneous delignification and graft copolymerization has been referred to as graft pulping. The grafting of a variety of vinyl monomers to aspen wood pulp in alcohol-based solvent pulping has been evaluated in this study. Variables evaluated included cooking conditions, catalysts and two-stage pulping. The analysis of the reaction is complicated due to effects of the vinyl monomers on the delignification process and losses of wood during the extraction sequences. Although only low levels of polymer loading were obtained when single monomers were added to the pulping solvent, much better results were obtained using a binary monomer system of acrylonitrile(AN) and styrene(ST). At a monomer addition level of 10% (1.75% AN, 8.25% ST) to the aqueous ethanol solvent, a 14.6% polymer loading was achieved with the majority of the graft as polystyrene (88%) . The use of a two-stage pulping sequence improved the polymer loading of polyacrylonitrile but not polystyrene. Lignin was the primary site of grafting.  相似文献   

11.
Polyoxymethylene was successfully grafted with styrene, butadiene, and acrylonitrile by the mutual irradiation method in the monomer containing 18% of dimethyl formamide. The CO2 and water vapor permeabilities and diffusivities were determined in the case of the butadiene- and acrylonitrile-grafted products. The former grafts had higher permeabilities than the ungrafted materials. However, the acrylonitrile grafts showed considerably reduced water vapor permeability and diffusivity compared to the ungrafted polyoxymethylene. Films made by grafting to polymer powder and compression molding showed lower permeabilities compared to those made by direct grafting to polyoxymethylene films.  相似文献   

12.
By the use of the cobalt 60 postirradiation grafting technique, purified cotton cellulose fibers were graft-copolymerized with binary mixtures of acrylonitrile and other monomers, including styrene, 1,3-butylene dimethacrylate, vinylpyrrolidone, vinylidene chloride, and methyl, butyl, lauryl, glycidyl, and allyl methacrylates. The irradiated cotton fibers were immersed in solutions of the monomers at 25°C to initiate graft copolymerization. Solvents were water, methanol, dimethyl sulfoxide, and methyl ethyl ketone, alone or in several combinations. The extent of graft copolymerization and the composition of the grafted copolymer depended on the composition of the binary mixtures of monomers and on the solvent or mixtures of solvents used. For example, addition of styrene, 1,3-butylene dimethacrylate, or vinylpyrrolidone to acrylonitrile increased the extent of graft copolymerization to a maximum value; addition of vinylidene chloride or allyl methacrylate to acrylonitrile did not greatly affect the extent of graft copolymerization; and addition of methyl or glycidyl methacrylate to acrylonitrile increased the extent of graft copolymerization without passing through a maximum value. The proportion of acrylonitrile in the grafted copolymer was generally less than that in the binary mixtures. As the reaction time was increased, the extent of graft copolymerization increased to a maximum value; however, the composition of the grafted copolymer did not change significantly. Generally, the addition of water to the solutions increased the extent of graft copolymerization. The mechanisms of these graft copolymerization reactions are discussed.  相似文献   

13.
The starch–polyacrylonitrile graft copolymer prepared from gelatinized wheat starch with ceric ammoninm nitrate as the initiator has been freed of ungrafted polyacrylonitrile and separated into fractions by extraction with dimethylformamide, γ-butyrolactone, and dimethyl sulfoxide. The copolymer fractions obtained differed appreciably in level of add-on, molecular weights of grafted chains, and grafting frequency. To determiue the molecular weights of grafted chains, the starch part of the copolymer was effectively removed by hydrolysis with α-amylase. It was necessary to dissolve or swell the polymer in dimethyl sulfoxide and freshly precipitate it by addition to water before enzymatic hydrolysis. In studying the effect of reaction medium on copolymer composition, there was less ungrafted homopolymer formed and a higher yield of graft copolymer possessing more frequent grafts with water than with aqueous dimethylformamide or aqueous ethylene glycol. Polymer solubility, the results of control polymerizations of acrylonitrile in the absence of starch, and the detection of glucose endgroups on the polyacrylonitrile liberated from the fractionated polymer by hydrolysis are presented as evidence that the copolymers obtained are true grafts rather thau intimate mixtures.  相似文献   

14.
Seven monomers, which varied widely in water solubility and ionic charge, were graft polymerized onto both unswollen starch and starch that had been swollen by heating in water to 60°C. Polymerizations were initiated with ferrous ammonium sulfate hexahydrate–hydrogen peroxide and, where applicable, with ceric ammonium nitrate. Graft copolymers were freed of ungrafted homopolymer by solvent extraction and were characterized by weight percentage of synthetic polymer incorporated in the graft copolymer, molecular weight of grafted branches, and grafting frequency. The influence of starch granule swelling on graft copolymer structure varied with the monomer used and could not be predicted on the basis of water solubility of monomer or its resulting polymer. With acrylonitrile and acrylamide, swollen starch gave higher molecular weight and less frequent grafts than unswollen starch. However, methyl methacrylate, N,N-dimethylaminoethyl methacrylate · HNO3, N-t-butylaminoethyl methacrylate. HNO3, and 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride produced less frequent graft of higher molecular weight when starch was unswollen. With acrylic acid, graft molecular weight was independent of starch granule swelling, although grafting was less frequent when swollen starch was used.  相似文献   

15.
A method of separation of polyvinyl side chains from grafted polyacrylonitrile–cotton copolymers was developed in order to study the effect of length of side chain on copolymer properties. The method consists of dispersion of the copolymer (1 g.) containing 20% polyacrylonitrile in 75% aq. ZnCl2 (100 ml.), addition of 6N HCl (100 ml.), heating for 1 hr. at 100°C., and precipitation and purification of the resulting vinyl polymer. The effect of hydrolysis on the intrinsic viscosity, the nitrogen content, and the infrared absorption spectra of the polyacrylonitrile polymers was investigated. It was concluded that this method of separation of the grafted polymers permitted a comparison of samples grafted by various techniques. A series of grafted copolymers was hydrolyzed, and the molecular weights of the isolated products were determined by measurements of intrinsic viscosity. Copolymer samples prepared by a post-irradiation grafting technique had the longest polyacrylonitrile side chains (molecular weight, 1 × 106). Samples grafted by a simultaneous irradiation technique varied in side-chain length, depending upon the monomer-solvent system used in the preparation of the copolymer (molecular weight, 3 × 104?5 × 105). Chemically initiated grafting to cotton resulted in a copolymer containing relatively short side chains (molecular weight, 9 × 104).  相似文献   

16.
Ceric ion‐initiated grafting on cellulose from a binary mixture of acrylonitrile and methyl methacrylate was carried out in heterogeneous and acidic conditions at 30 ± 0.1°C in a nitrogen atmosphere. To avoid the complexation of water molecules with Ce(IV) ions, the concentration of the nitric acid was taken to be more than the concentration of ceric ions. The effect of the feed concentration, reaction time, and ceric ions concentration on grafting were investigated at a fixed composition. To investigate the effect of monomer–monomer interactions on grafting, the graft copolymerization was also studied, using different feed compositions (fAN) ranging from 0.25 to 0.80. In this range of feed composition, the synergistic effect of methyl methacrylate molecules has shown an important effect on acrylonitrile monomer and facilitate the incorporation of the acrylonitrile monomer into the grafted chains. The reactivity ratios of acrylonitrile and methyl methacrylate were calculated using the Mayo and Lewis method and were found to be 0.74 and 1.03, respectively. The average sequence lengths of the monomers (M) were found to be dependent on the feed compositions and found to be arranged in alternate fashion in the grafted chains. The probability of the addition of a monomer (P1,1) to the growing radicals on cellulose ended with its own type of monomer was found to be dependent on the feed composition. The composition of the grafted copolymers, homocopolymers, was determined by IR and elemental analysis for nitrogen. None of the grafted chain on cellulose was found to be made of a single type of monomer. The ceric ion consumption during grafting was found to be independent of the molarity of the feed but shown an appreciable change in the initial few hours of grafting. The variation in the values of the grafting parameters as a function of the reaction conditions is suitably explained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 767–778, 2001  相似文献   

17.
A novel vapor-phase process has been developed for grafting relatively volatile acrylic monomers onto various polymeric substrates, using photo-initiation by near ultraviolet irradiation in the presence of biacetyl vapors. With it, very even graft polymerizations on the substrates, with minimum amounts of homopolymerization, were found. Furthermore, there were essentially no changes in the tensile or aesthetic properties of the treated surfaces. The degree of photografting is dependent upon the chemical composition and porosity of the substrate, the volatility and reactivity of the monomers, prewetting of the substrate with a suitable wetting agent, and the conditions of irradiation used. The effects of various reaction parameters on the photo-induced grafting of methyl acrylate, methyl methacrylate, and acrylonitrile on wool keratin are studied in detail. Increasing biacetyl and monomer flow rates and flow times, irradiation times, and moisture content of the wool all caused progressive increases in the amount of polymer grafted to the wool, up to limiting values dependent on the reaction parameters involved and monomer used. In all instances, the amount of homopolymer found on the fiber was limited and remained essentially constant over the range of conditions studied. A series of acrylic monomers of different volatilities and reactivities including methyl acrylate, methyl methacrylate, butyl acrylate, acrylic acid, acrylamide, acrylonitrile, N,N-dimethylaminoethyl methacrylate, and 2,2,2-trifluoroethyl methacrylate was successfully grafted onto several hydrophilic and hydrophobic textile fibers (wool, cotton, rayon, nylon, acrylics, polyester, and polypropylene) and other polymeric surfaces such as filter paper, cellophane, and acetate film by this process. The wetting agents used included water, methyl and n-propyl alcohol, N,N-dimethylformamide, dimethylsulfoxide, benzene, and chlorinated hydrocarbon solvents.  相似文献   

18.
Photoinitiated graft copolymerization of the vinyl monomers, styrene and acrylonitrile, onto cotton cellulose was studied using uranyl nitrate and ceric ammonium nitrate as photoinitiators. Uranyl nitrate photoinitiation showed a higher level of grafting for styrene, whereas in the case of acrylonitrile ceric ammonium nitrate was found to be the better photoinitiator. Optimized conditions of grafting, when employed to cotton swollen with sodium hydroxide and zinc chloride, enhanced the graft levels for both monomers. Grafted samples were subjected to thermal analysis, as well as estimation of moisture regain and tenacity. Thermal stability increased, whereas, the moisture regain and tenacity decreased, with the increase in graft add-on in the case of both monomers. Acrylonitrile-grafted cotton showed dyeability with cationic dye that improved with the level of graft add-on. Possible explanations have been given.  相似文献   

19.
A study has been made of radiation-induced grafting of vinyl acetate (VAc) on to (tetrafluoroethylene–perfluorovinyl ether) copolymer (PFA). Effects of grafting conditions such as inhibitor and monomer concentrations and irradiation dose on the grafting yield were investigated. In this grafting system, ammonium ferrous sulphate (Mohr′s salt) was added to the monomer-solvent mixture to minimize the homopolymerization of VAc and the most suitable concentration was found to be 2.0 wt%. It was found that the dependence of the initial grafting rate on monomer concentration is of the order 1.5. The degree of grafting tends to level off at high irradiation doses due to the recombination of formed free radicals without initiating graft polymerization. Some properties of the prepared graft copolymer such as swelling behaviour, electrical conductivity, thermal and mechanical properties were also investigated. The electrical conductivity was improved by hydrolysis of poly(vinyl acetate) in the grafted chains to their respective vinyl alcohols. The tensile properties were improved by grafting; however, the elongation percent decreased. The DTA data showed thermal stability of such graft copolymers for temperatures up to 300°C, but stability decreased at higher temperatures.  相似文献   

20.
Glycidyl methacrylate and N-vinyl pyrrolidone have been grafted onto natural rubber at 32°C using the simultaneous cobalt-60 irradiation technique. The natural rubber samples were swollen in the monomers for 24 h and thereafter subjected to gamma irradiation. The homopolymers formed in the graft copolymerization reactions and unreacted monomer were removed by solvent extraction using acetone and methanol for glycidyl methacrylate and N-vinyl pyrrolidone monomer, respectively. The influence of total dose and monomer concentration on the graft parameters was investigated. The dependence of the rate of grafting on the monomer concentration was found to be 0.93 and 0.80 for glycidyl methacrylate and N-vinyl pyrrolidone, respectively. DSC and TGA studies of the polymers were undertaken. Grafted copolymers based on glycidyl methacrylate were relatively less thermally stable compared with ungrafted natural rubber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号