首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
亚半微米投影光刻物镜的研究设计   总被引:2,自引:1,他引:2  
介绍了分步重复投影光刻业半微米光刻物镜光学和机械结构研究设计、设计结果,以及公差控制。指出技术指标已达到:数值孔径NA=0.63、工作波长λ=365nm、倍率5x、工作分辨力R≤0.35μm,设计和镜所用透镜片数最少,无胶合件,并具有暗场同轴对准和温度气压控制补偿功能。  相似文献   

2.
田伟  王平  王汝冬  王立朋  隋永新 《中国激光》2012,39(8):816002-232
光刻是大规模集成电路制造过程中最为关键的工艺,光刻的分辨力主要取决于光刻投影物镜的光学性能。光刻投影物镜光学元件面形精度为纳米量级,其对光学元件的加工及物镜单镜支撑提出了极高的要求。为193nm光刻投影物镜高精度的单镜面形,设计了一种运动学单镜支撑结构。运用有限元法(FEM)分析光刻投影物镜单镜运动学支撑结构在重力下物镜镜片的面形变化量,经分析物镜镜片的峰值(PV)值为15.46nm,均方根(RMS)误差为3.62nm。为了验证有限元计算精度,建立了可去除参考面面形及被测面原始面形的方法。经过分析对比,仿真结果与实验结果面形的PV值为2.356nm,RMS误差为0.357nm。研究结果表明,所设计的基于运动学193nm光刻投影物镜单镜支撑结构能够满足193nm光刻投影物镜系统对于物镜机械支撑结构的要求。  相似文献   

3.
亚微米i线和g线投影光刻物镜研制   总被引:4,自引:3,他引:4  
本文介绍了分步重复投影光刻机的i线和g线投影光刻物镜主要技术指标、设计要点、研制中解决的关键单元技术和设计试制结果。结果表明数值孔径NA=0.42i线和NA=0.45g线、视场15×15mm以及畸变<±0.1μm的五倍缩小投影光刻物镜研制成功。  相似文献   

4.
为了满足微米量级印刷电路板(PCB)光刻的需求,提出了一种新型PCB数字光刻投影成像技术。利用ZEMAX光学设计软件设计并优化了双高斯结构型光刻投影物镜。该物镜具有双远心结构,可以避免数字微反射镜(DMD)偏转产生离焦,分辨率可达13.68 mm,数值孔径NA=0.045,焦深为200 mm,严格控制像面畸变量小于0.03%。采用DMD多光束倾斜扫描技术,将DMD旋转一定的角度,利用曝光点的位置与光斑重叠积分能量的多少,形成更小的像素尺寸,提高了网格精度。基于该投影成像技术进行了光刻实验,实验结果证实了该投影成像技术的可行性,通过控制网格精度既能实现整数像素以外的线宽又能提高图像的分辨率和光刻效率。  相似文献   

5.
一种用于印刷电路板(PCB)的激光直接成像(LDI)光刻设备,需要加工高密度互连(HDI)基板的厚度变化范围为0.025~3mm,为此设计了一种共轭距可变的光刻投影物镜。采用双远心光路结构,通过压缩物方和像方远心度误差的办法,可以有效地实现共轭距变化范围达3mm。采用正负光焦度合理匹配,可以有效地在共轭距变化范围内很好地校正波像差、畸变等像差,实现良好的成像质量。以光刻投影物镜光学设计的具体实例,证实了通过压缩物方和像方远心度误差的办法,可以有效地获得共轭距变化一定范围的光刻投影物镜,并在该变化范围内保证实际光刻设备所要求投影物镜的成像质量。  相似文献   

6.
冯伯儒  张锦  刘娟 《应用激光》2005,25(5):325-326
光学光刻技术在微细加工和集成电路(IC)制造中一直是主流技术。随着IC集成度的提高,要求越来越高的光刻分辨力,但光学光刻的分辨极限受光刻物镜数值孔径(NA)和曝光波长(λ)的限制。激光干涉光刻技术具有高分辨、大视场、无畸变、长焦深等特点,其分辨极限为λ/4,在微细加工、大屏幕显示器、微电子和光电子器件、亚波长光栅、光子晶体和纳米图形制造等领域有广阔的应用前景。阐述了激光干涉光刻技术的基本原理。提出了一种采用梯形棱镜作为波前分割元件的激光干涉光刻方法。建立了相应的曝光系统,该系统可用于双光束、三光束、四光束和五光束等多光束和多曝光干涉光刻。给出了具有点尺寸约220nm的周期图形阵列的实验结果。  相似文献   

7.
介绍了一种248nm谱线投影光刻物镜光学设计结果,提出制造该镜头应解决的些技术问题。  相似文献   

8.
浸没式光刻技术的研究进展   总被引:6,自引:1,他引:5  
浸没式光刻技术是将某种液体充满投影物镜最后一个透镜的下表面与硅片之间来增加系统的数值孔径,可以将193nm光刻延伸到45nm节点以下。阐述了浸没式光刻技术的原理,讨论了液体浸没带来的问题,最后介绍了浸没式光刻机的研发进展。  相似文献   

9.
介绍一种248nm谱线投影光刻物镜光学设计结果,提出制造该镜头应解决的一些技术问题。  相似文献   

10.
1 前言先进微电子器件加工中,投影光刻不断地获得越来越小的极限尺寸。为了克服光衍射的限制,已经设计出具有较大数值孔径和较短工作波长的先进光刻机。到2007年工作波长将缩短到13nm左右的极紫外(EUV)波长。  相似文献   

11.
数字灰度投影光刻技术   总被引:1,自引:0,他引:1  
随着MEMS和MOEMS技术的发展和器件制作对低成本、灵活、高效的需求,数字灰度无掩模光刻技术已成为人们研究的热点。介绍了一种基于数字微镜器件(DMD)的无掩模数字灰度投影光刻技术,结合电寻址数字微镜阵列的工作方式,分析了DMD的灰度调制机理和投影成像特性;阐述了DMD微镜结构与投影系统的倍数、数值孔径的关系;设计了投影光刻系统,并进行了分辨力和三维面形的曝光实验。实验结果表明,数字灰度投影光刻技术灵活、方便,尤其在三维浮雕微结构的制作方面,可实现光刻灰度的数字化调制,表面粗糙度可达0.1μm。  相似文献   

12.
0.13μm集成电路制造中的光刻技术研究现状及展望   总被引:5,自引:0,他引:5  
近三十年来集成电路的特征尺寸不断缩小 ,主要是由于光刻技术稳定发展而推动的。按美国半导体工业协会的推测 ,在以后的一些年内 ,集成电路的特征尺寸还会不断缩小 ,到 2 0 0 3年 ,0 .13μm集成电路将投入生产。有许多光刻技术可以作为生产这种电路的候选者 ,但这种集成电路最终由哪种光刻技术实现 ,目前还没有确定。文中介绍了其中的几种技术 (即 157nm光学光刻技术、X射线光刻技术和角度限制散射电子束光刻技术 )的研究现状 ,并对它们在 0 .13μm集成电路中应用的可能性进行了简单的评述  相似文献   

13.
不同的投影物镜安装方式对应不同的隔振方式,不同的隔振方式对投影光刻系统的图形传递能力也有较大影响.对两种主要的光刻投影物镜安装方式进行了研究,并对各自特点进行了讨论.  相似文献   

14.
激光光刻技术的研究与发展   总被引:1,自引:0,他引:1       下载免费PDF全文
光刻技术作为制备半导体器件的关键技术之一将制约着半导体行业的发展和半导体器件的性能。随着半导体工业的发展,集成电路的特征尺寸越来越小,光刻技术将面临新的挑战。分析了激光光刻技术,包括投影式光刻和激光无掩膜光刻技术的研究现状,着重介绍了极紫外光刻(EUVL)作为下一代光刻技术的发展前景和技术难点、激光无掩膜光刻技术的发展,特别是激光近场扫描光刻、激光干涉光刻、激光非线性光刻等新技术的最新进展及其在高分辨率纳米加工领域的应用前景。  相似文献   

15.
基于DMD数字光刻系统,建立了一种新型的双光源DMD数字光刻系统.双光源DMD数字光刻系统由光源照明系统、DMD数字微镜、投影物镜以及CCD调焦系统等几个部分组成.实验表明,与DMD数字光刻系统相比,双光源DMD数字光刻系统具有调焦点不被曝光的优点,可用于制作光纤端面微光学器件.  相似文献   

16.
分析了传统光学投影光刻分辨力的物理极限,介绍了国内外各大器件和设备厂商、科研单位等为了突破这个物理极限而做出的努力;从原理、发展状况及优缺点等几个方面对比分析了下一代光刻技术,最后对未来几十年的主流光刻技术作出了展望。极紫外光刻、浸没式光刻和纳米压印光刻将作为主流技术应用到超大规模集成电路的批量生产中,电子束光刻可以在要求极高分辨力时和这几个主流技术配合使用。其他下一代光刻技术由于工艺不成熟、不能批量生产等原因,在近期还不具备占领光刻设备市场主流的能力。  相似文献   

17.
一种新型的具有角度限制的电子束投影曝光技术   总被引:2,自引:0,他引:2  
具有角度限制的电子束投影曝光技术有可能成为21世纪最有潜力的纳米光刻技术之一。通过配备缩小投影透镜、掩模承片台、基片工作台和控制用计算机,我们将一台透射电子显微镜(TEM)改造成一台用于电子束投影曝光的试验装置。利用这台装置完成了有关掩模性能、电子光学特性和图形对准的一系列实验,同时取得了最细线宽为78nm的抗蚀剂图形。  相似文献   

18.
深紫外光刻投影物镜是光刻机的核心部件,然而无论是照明光场偏振态的空间分布,还是光刻投影物镜自身的偏振像差都将改变光束的紧聚焦特性,对成像质量造成不可忽略的影响。基于三维琼斯矩阵,把偏振像差函数推广到三维空间,建立了三维相干光场中偏振像差的评价方法,并分析了典型的偏振敏感光学系统深紫外光刻投影物镜的三维偏振像差,详细阐述了其物理意义。研究发现:三维偏振像差函数的光瞳分布与视场、光学薄膜以及光学系统的自身结构密切相关。深入讨论了光学薄膜及偏振效应对光刻投影物镜成像质量的影响,进一步研究了照明光场的偏振态分布与光学系统波像差的关系,研究表明:光学薄膜引入的附加位相将导致光刻投影物镜的像质明显下降,而采用径向矢量光场照明可以改善成像质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号