首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用平衡液相取样法气体溶解度测定装置测定了氢气在萘中的溶解规律,并采用间歇式微型反应釜研究了氢气在无催化煤液化中的反应机理.结果表明:1)氢气在萘中的溶解随着温度和压力的升高而增加,溶解速率先快后慢,在5min时达到最大溶解量的76.21%左右,直到30min达到平衡;2)在萘溶剂的无催化煤液化反应中,氢气的溶解不是控制步骤,溶解氢参与液化反应的速度才是控制步骤;3)在较短时间的萘溶剂无催化煤液化时,氢气在萘溶剂中的预溶解提高了无催化煤液化的总转化率,其主要原因是部分预溶氢提前活化,使得煤液化反应初期活性氢增加;4)在较长时间的萘溶剂无催化煤液化时,预溶氢对总转化率的提高很小,但促进了液化产物的进一步裂解加氢轻质化.  相似文献   

2.
氢转移对煤的加氢液化至关重要,理解氢转移机理对于改善煤液化过程具有重要意义。在微型反应釜中通过考察氢气的溶解、溶剂类型以及不同类型催化剂对煤高温快速液化的影响,揭示了煤高温快速液化过程中单原子氢和双原子氢的转移机理。结果表明,在以四氢萘、氢气为条件的高温快速液化过程中,主要的活性氢来源于溶剂所提供的单原子;在以四氢萘、氮气为条件的高温快速液化过程中,不同催化剂对溶剂提供单原子氢的影响不同。在以四氢萘和萘、氢气为条件的高温快速液化过程中,双原子氢基本未参与液化反应,溶解并不是其参与液化反应的主要影响因素。以萘为溶剂、氢气气氛下的高温快速液化过程中,双原子氢参与反应需要一定的时间。在以萘或四氢萘、氢气为条件的高温快速液化过程中通过加入一定量的催化剂,可以促使双原子氢快速参与反应。  相似文献   

3.
为了研究氢气在煤液化油中的溶解规律和煤液化反应过程中的氢耗,选择煤液化油中几种代表性物质的混合组分十六烷-四氢萘、四氢萘-喹啉、十六烷-喹啉作为溶剂,利用平衡液相取样法气体溶解度测定装置,测定了氢气在上述溶剂中不同温度和压力下的溶解度数据(453.15 K~623.15 K,1 MPa~10 MPa),同时给出了氢气在这些混合溶剂体系中的溶解度规律.利用数学模型lnxH2=-a/T+6T+clnT+dlnPH2+e(式中参数可由氢气在相应溶剂中的溶解度数据关联得到)和P/N/A方法计算相关溶解度数据,发现该数学模型的计算预测值与实验值的平均绝对误差(η)在5.52%左右,而通过P/N/A方法的计算,预测值与实验值的平均绝对误差较大,这表明该数学模型在计算氢气在有机混合溶剂中的溶解度方面具有很好的应用价值.  相似文献   

4.
通过正交试验考察了蔗渣在水与四氢萘混合溶剂中液化过程的5个因素对蔗渣转化率的影响.蔗渣在混合溶剂中的优化工艺为:反应温度270 ℃、反应时间30 min、固液比(蔗渣与溶剂质量比)1:6、碱浸预处理NaOH用量4%、四氢萘用量(占总溶剂质量分数)50%.各因素的影响次序:NaOH用量>反应温度>四氢萘用量>固液比>反应时间.在此工艺条件下,蔗渣转化率可达到97.9%.实验结果表明,四氢萘部分取代液化溶剂中的水,可以有效提高蔗渣液化效率,同时降低反应温度及压力,促进实验操作条件的改善.  相似文献   

5.
为了探究反应温度、反应压力、催化剂添加量以及供氢溶剂对褐煤直接液化油中低级酚生成的影响以及低级酚生成的机理,利用模型化合物邻苄基苯酚在煤直接液化条件下进行加氢反应。实验结果表明:邻苄基苯酚在液化条件下主要发生桥键断裂反应生成低级酚,苯环不易被加氢饱和。温度升高对促进邻苄基苯酚桥键断裂有利;压力升高则不利于其桥键断裂;铁系催化剂添加量的增加会促进桥键断裂;供氢溶剂四氢萘相比十氢萘会抑制低级酚的生成。邻苄基苯酚加氢液化的产物以苯酚与甲苯为主,邻甲酚与苯相对较少。  相似文献   

6.
张克娟  夏新兴  康勋 《现代化工》2011,31(Z1):253-256
为解决硫磺溶解过程中溶剂种类选择少、溶解度低的问题,从溶剂分子结构出发选用四氢萘和甲苯混合溶剂在60~99℃、5~30 min、四氢萘与甲苯质量比(MROTTT)1~15参数范围内进行硫磺溶解实验。通过对四氢萘、甲苯单体及二者复合溶剂对硫磺的溶解性对比分析,结果表明,在温度83℃、时间7 min、MROTTT为15时,混合溶剂对硫磺的溶解度最大,达到14.17 g/100 g混合溶剂。  相似文献   

7.
以杨村煤为例,在490℃和2倍四氢萘溶剂的条件下,反应仅5min煤直接液化总转化率就达到84.47%,表明煤在直接液化的过程中具有初始高反应活性的特点。在纯氢气气氛下随着初始压力从1.5MPa增大到7MPa,转化率从66.38%上升为83.27%,表明压力大小对煤液化转化率有较大影响。1.5MPa下溶煤比提高到4:1以后,转化率增大到79.0%就不再增长,表明用添加过量供氢溶剂的方法弥补由于降低系统压力所带来的转化率损失不可行。  相似文献   

8.
氢气是油品加氢工艺中重要的反应组分,其在石油馏分中的溶解性能是影响加氢工艺过程的关键因素。重油中氢气溶解度的数据较为匮乏,尤其是重油中沥青质组分对氢气溶解度的影响并未受到关注。采用高压搅拌釜对氢气在四种重油原料中的溶解度进行系统研究,获得了氢气在重油中溶解性能随温度和压力的变化规律,并考察了沥青质含量对氢气溶解性能的影响。结果表明,氢气在相同重油原料中的溶解度随温度和压力的升高而增大,并且在较高温度或压力条件下,压力或温度变化对氢气溶解性能的影响更加显著。利用Aspen Plus中的Flash模块结合PR状态方程建立氢气溶解度计算模型,并进行高温条件氢气溶解度的预测,表明常规加氢条件下加拿大油砂沥青减渣中氢气溶解度与氢耗之间的矛盾极为尖锐,其脱沥青油的氢气溶解性能得到较大改善,胶质和沥青质的脱除缓解了氢气溶解和氢耗之间的矛盾。  相似文献   

9.
氢气是油品加氢工艺中重要的反应组分,其在石油馏分中的溶解性能是影响加氢工艺过程的关键因素。重油中氢气溶解度的数据较为匮乏,尤其是重油中沥青质组分对氢气溶解度的影响并未受到关注。采用高压搅拌釜对氢气在四种重油原料中的溶解度进行系统研究,获得了氢气在重油中溶解性能随温度和压力的变化规律,并考察了沥青质含量对氢气溶解性能的影响。结果表明,氢气在相同重油原料中的溶解度随温度和压力的升高而增大,并且在较高温度或压力条件下,压力或温度变化对氢气溶解性能的影响更加显著。利用Aspen Plus中的Flash模块结合PR状态方程建立氢气溶解度计算模型,并进行高温条件氢气溶解度的预测,表明常规加氢条件下加拿大油砂沥青减渣中氢气溶解度与氢耗之间的矛盾极为尖锐,其脱沥青油的氢气溶解性能得到较大改善,胶质和沥青质的脱除缓解了氢气溶解和氢耗之间的矛盾。  相似文献   

10.
硫磺新溶剂研究   总被引:1,自引:0,他引:1  
为了解决硫磺溶解过程中硫磺溶剂种类选择少、要求高问题,考察四氢萘、苯乙烯、十氢萘和甲苯4种溶剂在30~90℃下对硫磺的溶解度.实验结果表明4种溶剂对硫磺的溶解度均随温度升高而增大,在相同温度下,四氢萘对硫磺的溶解度最大,90℃时对硫磺的溶解度可达13.31 g/100 9溶剂,苯乙烯次之,甲苯在30~70℃对硫磺的溶解度略大于十氢萘,超过70℃,十氢萘对硫磺的溶解度大于甲苯.  相似文献   

11.
以洗油为供氢溶剂,考察了溶煤比、反应温度和氢初压对新疆五彩湾煤样加氢液化性能的影响.结果表明,在煤液化中,洗油部分加氢,生成具有强供氢能力的物质,增强其供氢能力,可以作液化溶剂,且溶煤比由四氢萘为溶剂的3降低到1.75;虽然氢初压为8.0 MPa,但反应终压为16.3 MPa,与四氢萘为溶剂时相当;油产率达到59.24%,转化率达到81.05%.  相似文献   

12.
在高压反应釜内,以四氢萘为供氢溶剂,Fe2O3+S为催化剂,研究了温度、反应时间、初始氢压、配比对兖州煤与秸秆共液化的影响。结果表明,提高反应温度,转化率、油产率增加;延长反应时间对转化率、油产率的影响较小;升高初始氢压,转化率、油产率刚开始增加,6 MPa以后增幅趋缓;在m(秸秆)∶m(兖州煤)=0.5∶9.5时,共液化的油产率为60.45%,比兖州煤单独液化的油产率提高了4.17%;在m(兖州煤)∶m(秸秆)=9.5∶0.5,440℃,8 MPa,90 min的条件下,共液化转化率和油产率达到最大,分别为83.58%和63.1%。  相似文献   

13.
在神华煤直接液化工艺中,为达到理想的反应深度,煤直接液化反应需要供氢性能良好的循环供氢溶剂、氢气、煤粉及催化剂等原料。其中,经过预加氢处理后的循环溶剂,具有良好的供氢性能,使得煤直接液化反应条件温和。在煤直接液化过程中,溶剂起着溶解煤粒、溶胀分散、稳定自由基、提供和传递转移活性氢、稀释液化产物等作用。当前,提高循环供氢溶剂自身的供氢和传递氢能力是煤直接液化新技术开发的重点之一。  相似文献   

14.
以兖州煤为研究对象,采用微型反应釜研究了两种铁系催化剂对煤高温快速液化的影响.结果表明,担载Fe2S3的催化剂和高分散铁系催化剂对煤的热解行为影响较小;担载Fe2S3催化剂促进了氢气参与反应和煤液化产物向轻质化转化,在优秀和足量的供氢溶剂条件下,溶剂的供氢速度明显优于氢气转换的供氢速度,催化剂的作用不明显;对比添加高分散铁系催化剂并加助剂S和添加Fe2S3催化剂的煤高温快速液化,发现元素S的作用与S和主催化剂铁的结合形态有关.  相似文献   

15.
以四氢萘为溶剂,通过离心分离的方法对煤液化沥青进行了净化,结果表明,在四氢萘:煤液化沥青质量比为3:1,离心转速4 000r/min,离心时间20min时,煤液化沥青的灰分可降至0.02%,QI含量降至0.8%,此时煤液化沥青的收率可达80%以上,溶剂的收率在75%左右.  相似文献   

16.
为探讨煤炭直接液化反应机理,论述了煤炭直接液化反应历程,分析了煤的浸润溶胀、煤的热解、供氢溶剂热解、H2溶解、H2活化、自由基之间的相互反应等过程。研究发现,在合适的温度范围内,煤热解10 min以内即接近自由基浓度的最大值,与煤热解自由基反应活性强弱分别为:煤热解提供的活性氢及小分子自由基供氢溶剂提供活性氢H2提供活性氢,并指出H2与煤热解自由基的反应程度是决定最终液化产物整体H/C原子比的重要因素。基于液化反应机理,提出进一步明确H2在不同催化剂作用下被活化与煤热解自由基反应的机理,降低反应温度、压力,开发高活性催化剂是下一步研究方向。  相似文献   

17.
为考察溶剂供氢性对加氢改质的影响,以四氢萘与甲基萘为溶剂,对低阶煤进行轻度加氢,考察不同反应条件对转化率、气产率、氢耗及产物分布的影响。结果表明,温度对转化率及气产率的影响显著,在360~430℃,随着温度升高,转化率及气产率增加显著;在氢压低于4 MPa时,脱氢反应体现较为显著,体系中有大量萘生成,压力对转化率及气产率的影响不明显,低压条件下,四氢萘供氢起主导作用;气相氢并不直接参与煤的反应,而是与溶剂发生加氢反应,进而由溶剂向煤供氢;低阶煤轻度加氢改质是一个快速反应的过程,反应时间不宜过长,30~60 min为宜;对改质后产物进行分析,黏结指数G75,灰分0.3%,硫含量0.3%。  相似文献   

18.
讨论了煤炭直接液化过程中溶剂的特点、作用及质量要求,煤液化溶剂具有一般溶剂的功能,同时还具有良好的供氢和传递氢的功能特点,起到溶解、分隔煤裂解生成的自由基的作用,溶剂必须具有一定的分子结构和分子大小。初步讨论了表征煤液化循环溶剂供氢性的指标,指出普通溶剂如四氢萘和二氢萘等部分饱和的芳香化合物可直接用作煤液化溶剂,多环芳烃含量较高的煤焦油和石油系重质油,经过预加氢处理提高溶剂的供氢性后,可作为煤液化过程的起始溶剂或替代溶剂。  相似文献   

19.
为研究新疆淖毛湖煤直接液化反应特性和产品分布规律,在0.5 L间歇式高压釜中,以四氢萘为溶剂,纳米氧化铁为催化剂及S为助剂,考察了不同反应温度、反应时间条件对煤转化率和液化产物收率的影响。结果表明:淖毛湖煤易液化,在反应器温度刚加热到425℃时,煤转化率和液化油收率已分别达到96.6%、56.68%;随着反应温度的升高以及反应时间的延长,煤转化率、氢耗、气体产率、油收率逐渐增加,而沥青类物质产率下降,水产率基本保持不变;当反应温度进一步增加以及反应时间继续延长,轻质油将会发生裂解,导致气体产率进一步增加,而油收率有所降低。当反应温度为455℃、反应时间为80 min时,煤转化率达到99.6%,油、沥青和气体收率分别为73.42%、1.64%、16.61%,氢耗为4.85%。基于液化试验结果,建立了5集总的反应动力学模型,采用优化算法获得动力学模型参数,煤转化率、沥青类物质和油气收率的模拟值和试验值的相对误差分别为0.5%、1.0%、8.0%。  相似文献   

20.
建立了一套测定高温高压下气体溶解度的实验装置,经检验准确可靠.利用此装置和平衡液相取样法,在25rC~350℃,2MPa~10MPa的温度和氢气压力范围内,测定了氢气在煤液化低温分离器油中的溶解度.结果发现,在实验测定范围内,氢气在低温分离器油中的溶解度分别随温度和氢气压力的升高而几乎都呈线性增大,温度350℃,氢气压力9.515MPa时达到最大值0.3381mol/kg;氢气溶解度和其压力关系并不严格遵守亨利定律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号