首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Research Bulletin》2006,41(8):1461-1467
The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization Pr and a drive voltage Vc of 4.2 μC/cm2 and 1.7 V for the film annealed in the conventional furnace and 1.0 μC/cm2 and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 108 polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode.  相似文献   

2.
《Materials Letters》2006,60(9-10):1174-1178
Preparation, thermal expansion, electrical conductivity and polarization of A2−αA αBO4-type oxides (A = Pr, Sm, A = Sr, B = Fe, Co) were investigated systematically to evaluate their potential as cathode materials for IT-SOFCs. Within 0.8  α  1.5, A2−αSrαBO4−δ (A = Pr, Sm, B = Fe, Co) could be obtained as a single K2NiF4-structural phase. Thermal expansion coefficients (TECs) of the specimens increase with increasing Sr2+ content, TECs of cobaltites are much higher than that of ferrites. The electrical conductivity of cobaltites is in the order of 102 S cm 1 near 800 °C, which is acceptable for the cathode of IT-SOFC. Polarization measurements showed that Sm0.5Sr1.5CoO4−δ exhibited the lowest cathodic overpotential at 700–900 °C (72 mV at 500 mA/cm2 at 800 °C), being a high potential candidate of cathode material for IT-SOFCs.  相似文献   

3.
《Materials Letters》2006,60(13-14):1559-1564
Lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on Si (100) and Pt(111)/Ti/SiO2/Si(100) substrates by a new reverse dip-coating method of sol–gel process. The method was first proposed and applied to coat films. It has several advantages over the conventional sol–gel coating method, including: no consideration of the mechanical transmission that is difficult to manipulate with costly exact apparatus in classical dip-coating procession, convenient processing control, simplicity, low cost, less pollution, and easy fabrication films on large areas and irregular shaped devices etc. This paper studied the factors including PbO content of precursor, TiO2 and ZrO2 layers, which are related to raw materials of PZT precursor and influence greatly the crystal orientation of the final thin films. We find that the PZT films deposited by precursor with 20% mole excess Pb displayed strong (111) preferred orientation, with 5% mole excess Pb showed a little (100) orientation and pyrochlore phase. The precursor with 10% mole excess Pb was found prompting the PZT films phase transformation with (110) preferred orientation. In addition, the results show that the TiO2 and ZrO2 seeding layers had totally different effects on the preferred orientation of PZT films. The films with TiO2 seeding layer were highly (111) oriented and exhibited better ferroelectric properties (remnant polarization Pr = 14.2 μC cm 2, coercive field Ec = 59.1 Kv cm 1) than those of the films with ZrO2 seeding layer shown (100) orientation (Pr = 7.4 μC cm 2, Ec = 42.9 Kv cm 1).  相似文献   

4.
《Materials Research Bulletin》2013,48(11):4711-4717
CdTe films were deposited by thermal evaporation onto chemical bath deposited CdS (CBD-CdS) films. The composite films were subjected to rapid thermal annealing (RTA) to observe simultaneous grain growth in both the CdS and CdTe layers. The films were characterized by measuring the compositional, microstructural and photoluminescence (PL) properties. PL spectra is dominated by the characteristic peaks (∼1.42 eV and ∼1.26 eV) associated with the virgin CdTe film. Additional features located at ∼2.56 eV and ∼1.99 eV could also be detected. The Fourier Transform Infra Red (FTIR) peak at ∼482 cm−1 appeared due to the simultaneous presence of absorption peaks for CdTe stretching mode as well as Cd-S modes. Appearance of the broad peak between 1000 cm−1 and 1165 cm−1 may be an indication of interfacial alloying. Secondary ion mass Spectroscopy (SIMS) measurements were done to observe the compositional uniformity in the film and to measure the interfacial mixing behaviour.  相似文献   

5.
We report, the effect of air annealing on solar conversion efficiency of chemically grown nanostructured heterojunction thin films of CdS/CuInSe2, such 100, 200 and 300 °C air annealed thin films characterized for physicochemical and optoelectronic properties. XRD pattern obtained from annealed thin films confirms tetragonal crystal geometry of CuInSe2 and an increase in average crystallite size from 16 to 32 nm. An EDAX spectrum confirms expected and observed elemental composition in thin films. AFM represents high energy induced grain growth and agglomeration due to polygonization process. Increase in optical absorbance strength and decrease in energy band gap from 1.36 to 1.25 eV is observed. Increase in charge carrier concentration from 2 × 1016 to 8 × 1017 cm?3 is observed as calculated from Hall effect measurements and an enhancement in solar conversion efficiency from 0.26 to 0.47% is observed upon annealing.  相似文献   

6.
《Materials Letters》2007,61(19-20):4117-4120
Bi4Ti3O12 (BIT) ferroelectric thin films with Dy3+ substitution (Bi4−xDyxTi3O12, x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively) were grown on Pt(111)/Ti/SiO2/Si(100) substrates using sol–gel method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that after annealing at 710 °C for 10 min, all Bi4−xDyxTi3O12 films became polycrystallites. Among all the deposited thin films, the Bi3.4Dy0.6Ti3O12 specimen exhibits improved ferroelectric properties with the largest average remanent polarization (2Pr) of 53.06 μC/cm2 under applied field of 400 kV/cm and fatigue free characteristics (16% loss of 2Pr after 1.5 × 1010 switching cycles), indicating that it is suitable for non-volatile ferroelectric random access memories applications.  相似文献   

7.
Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm−1 and present a band gap of 0.94 eV.  相似文献   

8.
Thermal stability of deposited Si–B–C–N materials (film fragments or powders without a substrate) in inert gases (He and Ar) up to 1700 °C was investigated using differential scanning calorimetry, high-resolution thermogravimetry and X-ray diffraction measurements. Amorphous Si–B–C–N films were fabricated by dc magnetron co-sputtering of a single B4C–Si target in two nitrogen–argon gas mixtures (50% N2 + 50% Ar or 25% N2 + 75% Ar). It was found that the deposited Si–B–C–N materials can be more stable at high temperatures in the inert atmosphere than the usually used substrates (e.g. SiC or BN). The materials with the compositions (in at.%) Si32–33B10C2N50–51, for which N/(Si + B + C) = 1.1–1.2, retained their amorphous structure up to 1600 °C without any structural transformations and detectable mass changes.  相似文献   

9.
Fluorine-doped ZnO transparent conductive thin films were successfully deposited on glass substrate by radio frequency magnetron sputtering of ZnF2. The effects of rapid thermal annealing in vacuum on the optical and electrical properties of fluorine-doped ZnO thin films have been investigated. X-ray diffraction spectra indicate that no fluorine compounds, such as ZnF2, except ZnO were observed. The specimen annealed at 500 °C has the lowest resistivity of 6.65 × 10? 4 Ω cm, the highest carrier concentration of 1.95 × 1021 cm? 3, and the highest energy band gap of 3.46 eV. The average transmittance in the visible region of the F-doped ZnO thin films as-deposited and annealed is over 90%.  相似文献   

10.
《Thin solid films》2002,402(1-2):167-171
Boron nitride has for the first time been deposited from gaseous BBr3 and NH3 by means of atomic layer deposition. The deposition temperatures were 400 and 750 °C, and the total pressure was 10 torr. The BN films, deposited on silica substrates, showed a turbostratic structure with a c-axis of 0.70 nm at a deposition temperature of 750 °C as determined by X-ray diffraction. The films deposited at 400 °C were significantly less ordered. The film density was obtained by means of X-ray reflectivity, and it was found to be 1.65–1.70 and 1.90–1.95 g cm−3 for the films deposited at 400 and 750 °C, respectively. Furthermore, the films were, regardless of deposition temperature, fully transparent and very smooth. The surface roughness was 0.3–0.5 nm as measured by optical interferometry.  相似文献   

11.
Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO2. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 106 while the device mobility values were increased from 2.31 cm2/V s to 6.24 cm2/V s upon increasing the deposition temperature of the tin oxide films.  相似文献   

12.
《Materials Letters》2007,61(4-5):937-941
The (Pb, La)TiO3 (PLT) ferroelectric thin films with and without a special buffer layer of PbOx have been deposited on Pt/Ti/SiO2/Si(100) substrates by RF magnetron sputtering technique at room temperature. The microstructure and the surface morphology of the films annealed at 600 °C for 1 h have been investigated by X-ray diffraction (XRD) and atomic force microscope (AFM). The surface roughness of the PLT thin film with a special buffer layer was 4.45 nm (5 μm × 5 μm) in comparison to that of 31.6 nm (5 μm × 5 μm) of the PLT thin film without a special buffer layer. Ferroelectric properties such as polarization hysteresis loop (PV loop) and capacitance–voltage curve (CV curve) of the films were investigated. The remanent polarization (Pr) and the coercive field (Ec) are 21 μC/cm2 and 130 kV/cm respectively, and the pyroelectric coefficient is 2.75 × 10 8 C/cm2 K for the PLT film with a special buffer layer. The results indicate that the (Pb, La)TiO3 ferroelectric thin films with excellent ferroelectric properties can be deposited by RF magnetron sputtering with a special buffer layer.  相似文献   

13.
Non-polar ZnO thin films were deposited on m-plane sapphire substrates by pulsed laser deposition at various temperatures from 300 to 700 °C. The effects of growth temperature on surface morphology, structural, electrical, and optical properties of the films were investigated. All the films exhibited unique m-plane orientation indicated by X-ray diffraction and transmission electron microscopy. Based on the scanning electron microscopy and atomic force microscopy, the obtained films had smooth and highly anisotropic surface, and the root mean square roughness was less than 10 nm above 500 °C. The maximum electron mobility was ~18 cm2/V s, with resistivity of ~0.26 Ω cm for the film grown at 700 °C. Room temperature photoluminescence of the m-plane films was also investigated.  相似文献   

14.
《Optical Materials》2014,36(12):2376-2381
Borate crystal is an important type of nonlinear optical crystals used in frequency conversion in all-solid-state lasers. Especially, LiB3O5 (LBO), CsB3O5 (CBO) and CsLiB6O10 (CLBO) are the most advanced. Although these borate crystals are all constructed by the same anionic group-(B3O7)5−, they show different nonlinear optical properties. In this study, bulk weak absorption values of three borate crystals have been studied at 1064 nm by a photothermal common-path interferometer. The bulk weak absorption values of them along [1 0 0], [0 1 0] and [0 0 1] directions were obtained, respectively, to be approximately 17.5 ppm cm−1, 15 ppm cm−1 and 20 ppm cm−1 (LBO); 80 ppm cm−1, 100 ppm cm−1 and 40 ppm cm−1 (CBO); 600 ppm cm−1, 600 ppm cm−1 and 150 ppm cm−1 (CLBO) at 1064 nm. The results showed an obvious discrepancy of the values of these crystals along three axis directions. A correlation between the bulk weak absorption property and crystal intrinsic structure was then discussed. It is found that the bulk weak absorption values strongly depend on the interstitial area surrounded by the B–O frames. The interstitial area is larger, the bulk weak absorption value is higher.  相似文献   

15.
《Materials Letters》2006,60(9-10):1224-1228
Pure and 2 mol% Mn doped Ba0.6Sr0.4TiO3 (BST) thin films have been deposited on La0.67Sr0.33MnO3 (LSMO) coated single-crystal (001) oriented LaAlO3 substrates using pulsed-laser deposition technique. The bilayer films of BST and LSMO were epitaxially grown in pure single-oriented perovskite phases for both samples, and an enhanced crystallization effect in the BST film was obtained by the addition of Mn, which were confirmed by X-ray diffraction (XRD) and in situ reflective high energy electron diffraction (RHEED) analyses. The dielectric properties of the BST thin films were measured at 100 kHz and 300 K with a parallel-plate capacitor configuration. The results have revealed that an appropriate concentration acceptor doping is very effective to increase dielectric tunability, and to reduce loss tangent and leakage current of BST thin films. The figure-of-merit (FOM) factor value increases from 11 (undoped) to 40 (Mn doped) under an applied electric field of 200 kV/cm. The leakage current density of the BST thin films at a negative bias field of 200 kV/cm decreases from 2.5 × 10 4 A/cm2 to 1.1 × 10 6 A/cm2 by Mn doping. Furthermore, a scanning-tip microwave near-field microscope has been employed to study the local microwave dielectric properties of the BST thin films at 2.48 GHz. The Mn doped BST film is more homogeneous, demonstrating its more potential applications in tunable microwave devices.  相似文献   

16.
《Materials Research Bulletin》2006,41(10):1835-1844
(C2N2H10)[FexV1−x(HPO3)F3] (x = 0.44, 0.72) have been synthesized using mild solvothermal conditions under autogenous pressure and the ethylenediamine molecule as templating agent. The crystal structures have been determined from X-ray single-crystal diffraction data. The compounds crystallize in the orthorhombic P212121 space group with Z = 4 and unit-cell parameters a = 12.8494(9), b = 9.5430(6), c = 6.4372(5) Å, and a = 12.8578(1), b = 9.5342(1), c = 6.4370(7) Å for (C2N2H10)[Fe0.44V0.56(HPO3)F3] and (C2N2H10)[Fe0.72V0.28(HPO3)F3], (1) and (2), respectively. These isostructural compounds exhibit a monodimensional crystal structure formed by pillared double anionic chains with the formula [M(HPO3)F3]2−, extended along the [0 0 1] direction. These doubled ionic chains are the result of the linking of two simple chains in which there are alternating octahedral [MO3F3] and tetrahedral groups [HPO3]. The ethylendiammonium cations are placed in the space delimited by three different chains. The metallic ions are interconnected by the pseudo-pyramidal (HPO3)2− phosphite oxoanions, adopting a slightly distorted octahedral geometry. The IR spectra show bands corresponding to the phosphite oxoanion and the ethylendiamonium cation at 2400 and 1600 cm−1, respectively. The thermogravimetric analyses show that these phases are stable up to ca. 280 °C, at higher temperatures, the decomposition of the crystal structure begins by calcination of the organic cation and the elimination of the fluoride anions. The diffuse reflectance spectra show bands of the V3+ ion (d2) in octahedral symmetry. The values of the Dq (1540, 1540 cm−1), and Racah parameters, B (560, 535 cm−1) and C (3055, 3140 cm−1) for (1) and (2), respectively, correspond with those usually found for octahedrically coordinated V(III) compounds. Magnetic measurements, performed on a powered sample from 5.0 to 300 K at 1000 G, in the ZFC and FC modes, indicate the existence of antiferromagnetic interactions.  相似文献   

17.
The effect of substrate temperature (Ts) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The Ts was varied from 300 °C to 500 °C, with a step of 50 °C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 °C and 500 °C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in Ts. The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 °C is the optimal Ts. Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing Ts until 400 °C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing Ts. The optical band gap calculated from the absorption edge showed that the films deposited with Ts of 300 °C and 350 °C possess higher values than those deposited at higher Ts.  相似文献   

18.
Thin films of cadmium oxide were thermally deposited on glass substrates at partial pressures of oxygen, pO2 in the range 1.33×10−2 to 0.133 Pa at a substrate temperature of 160 °C. Energy dispersive analysis of X-ray fluorescence (EDAX) revealed that the CdO films deposited at pO2 value of 4.00×10−2 Pa were nearly stoichiometric. X-ray diffractometry (XRD) confirmed the polycrystalline nature of the film structure. All the films showed an fcc structure of the NaCl-type, as the dominant phase. The films exhibited preferred orientation along the (1 1 1) diffraction plane. The texture coefficients calculated for the various planes at different oxygen partial pressures (pO2) indicated that the maximum preferred orientation of the films occurred along the (1 1 1) plane at an oxygen partial pressure of 4.00×10−2 Pa. This was interpreted in terms of oxygen chemisorption and desorption processes. The lattice parameters determined from the diffraction peaks were in the range 4.655–4.686 Å. The average lattice parameter a0 found by extrapolation using the Nelson–Riley function was 4.696 Å. Both the lattice parameter and the crystallite size were found to increase with increased partial pressure of oxygen. On the other hand, the strain and dislocation density were found to decrease as the partial pressure of oxygen was raised. A maximum (80%) in the optical transmittance at λ=600 nm and minimum in the electrical resistivity (9.1×10−4 Ω cm) of the films occurred at an optimum partial pressure of oxygen of 4.00×10−2 Pa. The results are discussed.  相似文献   

19.
In this paper, we report on the effect of Al2O3/porous silicon combined treatment on the surface passivation of monocrystalline silicon (c-Si). Al2O3 films with a thickness of 5, 20 and 80 nm are deposited by pulsed laser deposition (PLD). It was demonstrated that Al2O3 coating is a very interesting low temperature solution for surface passivation. The level of surface passivation is determined by techniques based on photoconductance and FTIR. As a result, the effective minority carrier lifetime increase from 2 μs to 7 μs at a minority carrier density (Δn) of 1 × 1015 cm?3 and the reflectivity reduce from 28% to about 7% after Al2O3/PS coating.  相似文献   

20.
Here we report the influence of Sb doping on the structural and optical properties of Zn1−xSbxSe (0  x  0.15) thin films prepared by thermal evaporation technique on glass substrate. Various characterization techniques such as X-ray diffraction (XRD), EDS, Raman spectroscopy and spectroscopic ellipsometer are employed to assess the structural and optical properties of the deposited films. XRD analysis reveals the formation of polycrystalline cubic structure having preferred growth orientation along (1 1 1) plane without any evidence of secondary phases. Crystallographic parameters like grain size, micro strain, dislocation density, number of crystallites per unit area and texture coefficient point out the structural modification in ZnSe films with Sb inclusion. Raman analysis shows the existence of three 1LO, 2LO and 3LO phonon modes at 251, 511 and 745 cm−1 in pure ZnSe while 3LO mode disappears by the incorporation of Sb atoms in ZnSe matrix. Increase in FWHM of Raman peaks with Sb concentration also indicates the change in crystalline quality of ZnSe films which is in accordance with our XRD results. Spectroscopic ellipsometry results demonstrate a decreasing trend for the optical band gap energy (from 2.61 eV to 1.81 eV) with increasing Sb content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号