首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Wear》2006,260(7-8):879-885
A series of ductile iron samples alloyed with 0.66% Cu, 1.02% Ni, and 0.26% Mo were austempered at 315 and 370 °C for 5–240 min and then tested for wear strength. A block-on-ring wear testing machine was used for this purpose. The wear samples were tested under a load of 45 N and a displacement speed of 2.40 m/s. The experimental outcome indicates that the wear properties of the austempered ductile iron (ADI) are strongly influenced by the exhibited microstructure. In particular, optimal wear properties were found in samples austempered at 370 and 315 °C for 90 and 120 min, respectively. These heat treatment times are long enough to promote the development of a relatively high volume fraction of high carbon retained austenite concomitant with ferrite and a fine dispersion of carbides. After wear testing, scanning electron microscopy (SEM) observations on the wear samples did not show any evidence of a transformation-induced-plasticity (TRIP). Hence, the experimental evidence suggests that the dominant wear mechanism was delamination associated with sub-surface crack formation and final wear particle debris removal.  相似文献   

2.
The dry rolling/sliding wear behaviour of Si alloyed carbide free bainitic steel austempered at different temperatures and sliding distances has been evaluated. 60SiCr7 spring steel samples were austempered in a salt bath maintained at 250, 300 and 350 °C respectively for 1 h. Rolling with 5% sliding wear tests were performed using self mated discs for three different test cycles, namely 6000, 18,000 and 30,000 cycles. The aim was to study the wear performance of the 60SiCr7 steel with a carbide-free microstructure containing different amounts of retained austenite. An in-depth microstructural characterization has been carried out before and after the wear tests in order to link the wear behaviour to the microstructure of each sample. The wear resistance has been expressed by means of the specific wear calculated from the mass loss after the tests. The worn surfaces were analysed by scanning electron microscopy and X-ray diffraction. Microhardness profiles were also obtained in order to analyse strain-hardening effects beneath the contact surfaces. The results indicate that the material with highest hardness—the one austempered at 250 °C—exhibited the lowest wear rate in every case. It was also observed that the hardness increment and thickness of the hardened layer increases with increasing the austempering temperature and number of test cycles. Finally, the results appear to indicate that the initial roughness of the samples has no major effect in the wear rate of the samples above 2500 cycles. The higher wear performance of the sample austempered at 250 °C has been attributed to its superior mechanical properties provided by its finer microstructure. It has been evidenced that all samples undergo the TRIP phenomenon since, after wear; no retained austenite could be detected by XRD.  相似文献   

3.
《Wear》2006,260(1-2):1-9
In the present work, we report the processing and properties of WC–6 wt.% ZrO2 composites, densified using the pressureless sintering route. The densification of the WC–ZrO2 composites was carried out in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y-stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. An important observation is that a transition in friction and wear with load is noted. The dominant mechanisms of material removal appear to be tribochemical wear and spalling of tribolayer.  相似文献   

4.
《Wear》2004,256(7-8):774-786
The present work reports the effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Five different grades of weld hardfacing cast irons were selected for the present investigation. The solid particle erosion experiments were carried out with blast furnace sinter, silica sand and alumina particles under mild (53–75 μm, 25 m s−1), moderately severe (125–150 μm/100–150 μm, 50 m s−1) and under severe erosion conditions (300–425 μm, 90 m s−1) at impingement angles of 30 and 90°. The variation in erosion rate with carbide volume fraction was observed to be strong function of the erodent particle hardness, impingement angle and the impact velocity. Under mild erosion conditions, erosion rate decreased with increasing carbide volume fraction (CVF), whereas erosion rate increased with CVF under moderately severe erosion condition with alumina particles. With silica sand particles under moderately severe erosion conditions the beneficial effect of large volume fraction of carbides could only be observed at 30°, whereas at normal impact erosion rate increased with increasing CVF. The erosion rate showed power law relationship with ratio of hardness of erodent particle to that of the target material (He/Ht) and expressed as E=c(He/Ht)p.With increasing severity of erosion conditions erosion rate showed stronger dependence on He/Ht as compared to those under mild and moderately severe erosion conditions. The mechanism of materials removal from the carbides involved Hertzian fracture with softer sinter particles, whereas harder alumina particles could plastically indent and cause gross fracture of the carbides.  相似文献   

5.
Abrasive wear behavior of ductile irons with different dual matrix structures has been investigated. In order to obtain ductile irons with different dual matrix structures an unalloyed ductile iron specimens were austenitized in the two-phase region (α + γ) at various temperature (795 °C and 815 °C) and then rapidly transferred to a salt bath held at the 365 °C for austempering for 30, 90 and 120 min. Some specimens were quenched from same intercritical austenitizing temperatures and tempered at 550 °C for 60 and 300 min. Some specimens were also conventionally austempered and/or quenched from 900 °C for comparison. Experimental results showed that, the tensile strength increased and ductility decreased with increasing martensite volume fraction in the specimen with martensite dual matrix structure. By increasing the tempering time, the yield and UTS decreased and ductility increased. In addition, the specimens with ausferrite dual matrix structures exhibited much greater ductility than conventionally austempered ones. The tensile strength increased while ductility decreased with increasing ausferrite volume fraction. Furthermore in all austenitized specimens, the abrasive weight loss of austempered specimens (A series) was lower than those of quenched specimens (Q series) irrespective of all loads due to increased AFVFs and total elongation. It was shown that wear loss of both tested materials in abrasive wear was proportional to the applied load. However, there was a decreasing trend in the weight loss of the A795 with dual matrix structure austempered for 30 and 90 min with increasing load. The reason was because of the fact that the specimen surface was work hardened with cutting efficiency of the abrasive reduced through clogging, and attrition jointly leading to less weight loss. Moreover, increasing the austempering time caused more ductile ausferritic structure to displace hard martensite. In all austempered samples, the abrasive weight loss increased with increasing the austempering time. As for the case of Q samples, the abrasive weight loss increased more or less linearly with load since an increase in the applied load might increase the contact stress. Among the Q samples, the highest weight loss was obtained for the Q795-300, Q815-300 sample because of lower martensite volume fraction, but the lowest weight loss was observed for the Q900 sample due to the highest martensite volume fraction. For Q900 samples, the amount of fracture of the abrasives was found to be increase with the harder specimen, and it may have contributed somewhat to the increased wear.Furthermore, microchips were dominant wear mechanism by cutting mode for higher ductile materials while micro-ploughing was predominant wear for harder materials, but wear also occurred by combinations of ploughing and embedding particles into the surface for Q samples. Cross-section examination by SEM through the wear surfaces revealed that a more smoother surface was observed for the A795 sample than that of the Q795 sample. However, a more rougher surface was observed for the A900-120 sample than that of the Q900 sample.  相似文献   

6.
《Wear》2007,262(3-4):274-281
Polymer consumption is increasing and the recycling rate is 30–40 wt.%. Thus any process or application that uses recycled plastic residue will be looked upon with favor. It has been demonstrated that post-consumer commingled polymer, or PCCP, coatings can be produced by thermal spraying. Furthermore, polymeric coatings are widely used as protective coatings against solid particle erosion. Therefore, in this paper the erosion behavior of thermal spray coatings that have some PCCP material is investigated. The coatings were produced using a low velocity combustion thermal spray process and a PCCP mixed with different levels of virgin ethylene–methacrylic acid co-polymer (EMAA). The erosion rates using 50 μm alumina were determined at impact angles of 30° and 90°. The wear features were analyzed by scanning electron microscopy and profilometry. The results exhibited brittle wear features, consistent with the relationship between erosion rates and mechanical properties of the polymers. However, a decrease in erosion rate with an increase in impact angle, from 30° to 90°, indicates ductile behavior during erosion.  相似文献   

7.
Arjula Suresh  A.P. Harsha  M.K. Ghosh 《Wear》2009,266(1-2):184-193
Solid particle erosion behavior of polyphenylene sulfide, reinforced by short glass fibers with varying fiber content (0–40 wt%) has been studied. Steady-state erosion rates have been evaluated at different impact angles (15–90°) and impact velocities (25–66 m/s) using silica sand particles (200 ± 50 μm) as an erodent. PPS and its composites exhibited maximum erosion rate at 30° impact angle indicating ductile erosion behavior. Though PPS is a brittle thermoplastic, incubation period was found for neat resin and its composites at normal impact (α = 90°). The erosion rates of PPS composites increased with increasing amount of glass fiber. Morphology of eroded surfaces was examined using scanning electron microscopy (SEM) and possible wear mechanisms were discussed. Also, artificial neural networks (ANNs) technique has been used to predict the erosion rate based on the experimentally measured database of PPS composites. The results show that the predicted data are well acceptable when comparing them to measured values. A well-trained ANN is expected to be very helpful for prediction of wear data for systematic parameter studies.  相似文献   

8.
Solid particle erosion tests were conducted on four different types of silicon carbide ceramic composites. The composites are cotton fabric based Si/SiC with and without chemical vapour infiltration, fine teak wood powder based Si/SiC and coarse teak wood powder based Si/SiC. The erodents used are angular SiC particles of average size 80, 250 and 450 μm. The velocities with which particles impacted on the target materials were varied from 20 to 50 m/s. Similarly the angle of impact was varied from 20° to 90°. Scanning electron microscopic observations on the eroded surface show brittle and cleavage like fracture. Fine teak wood powder based Si/SiC ceramic shows better erosion resistance than the other ceramics. Homogenous distribution of SiC grains with the presence of very fine grains of silicon and carbon is responsible for the improved erosion resistance. The higher erosion rate in cotton fabric based SiC arises from its microstructure. Here, the free carbon and free silicon grains are large in size and the SiC phase has very low hardness as compared to the erodent.  相似文献   

9.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

10.
In this study, high-velocity oxygen-fuel sprayed amorphous coatings have been heat treated at various temperatures to form microstructures with crystalline phases. The structure, micro-hardness, cavitation erosion resistance and erosion–corrosion resistance of these coatings are compared. Crystalline phases are discovered in the coatings after heat treatments at 650 °C and 750 °C. The coating heat treated at 750 °C exhibits the poorest cavitation erosion resistance in 3.5 wt% NaCl solution among all coatings due to the degraded corrosion resistance. However, the hardness of the crystallized coating can reach 1000 Hv and the erosion–corrosion resistance of the heat treated coating is better than the untreated one.  相似文献   

11.
This study examines frictional heating and the associated temperature rise for a sliding circular contact using an in situ thermal micro-tribometer. Observation of the contact temperature used a radiometric approach to measure local temperature at the sliding interface with an emphasis on full field imaging and thermal accuracy. Filled natural rubber samples were slid against optically smooth CaF2 counter-samples. Temperature rise was measured for externally applied normal forces ranging from∼100 to 1000 mN and sliding velocities ranging from∼250 to 1000 mm/s, producing temperature rises between ∼3 and 26 °C. Measured temperature rise was compared to the analytical models of Jaeger, Archard, and Tian and Kennedy for the average temperature rise in sliding contacts.  相似文献   

12.
《Wear》2007,262(7-8):807-818
The present investigation reports about, the solid particle erosion behaviour of randomly oriented short E-glass, carbon fibre and solid lubricants (PTFE, graphite, MoS2) filled polyetherimide (PEI) composites. The erosion rates (ERs) of these composites have been evaluated at different impingement angles (15–90°) and impact velocities (30–88 m/s). Mechanical properties such as tensile strength (S), ultimate elongation to fracture (e), hardness (HV), Izod impact strength (I) and shear strength (Ss) seems to be controlling the erosion rate of PEI and its composites. Polyetherimide and its glass, carbon fibre reinforced composites showed semi-ductile erosion behaviour with peak erosion rate at 60° impingement angle. However, glass fibre reinforced PEI composite filled with solid lubricants showed peak erosion rate at 60° impingement angle for impact velocities of 30 and 88 m/s, whereas for intermediate velocities (52 and 60 m/s) peak erosion rate observed at 30° impingement angle. It is observed that 20% (w/w) glass fibre reinforcement helps in improving erosive wear resistance of neat PEI matrix. Erosion efficiency (η) values (0.23–8.2%) indicate micro-ploughing and micro-cutting dominant wear mechanisms. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms are discussed.  相似文献   

13.
This article follows a previous study on friction and wear of 25CrMo4 steel [N. Khanafi-Benghalem, K. Loucif, E. Felder, F. Delamare, Influence de la température sur les mécanismes de frottement et d’usure des aciers X12NiCrMoSi25-20 et 25CrMo4 glissant sur du carbure de tungstène, Matériaux et techniques 93 (2005) 347–362]. The aim of our work is to study in more details the process of plastic deformation and the wear rate of this steel in lubricated sliding against cemented tungsten carbide, process observed in the previous work. The considered parameters are the temperature T (from 20 to 200 °C), the normal force P (from 500 to 1500 N), the steel structure (normalised HV 220 and quenched/tempered HV 480 states) and the sliding velocity v (from 0.05 to 0.3 m/s). We measured the friction coefficient and the sample total volume loss. A displacement sensor follows the volume loss evolution during the test; this follow-up is approximate because of the sample plastic flow which leads to the formation of peripheral burrs. All the tests conditions generate a significant plastic deformation of the sample steel, even in the quenched/tempered state: it produces a marked increase of the surface hardness, the work hardened layer being much finer for the quenched/tempered state (15 μm) than for the normalised state (40 μm at 20 °C). For temperatures T  100 °C in normalised state, the wear follows the Archard's law with an increasing rate with temperature. For T  120 °C, the wear rate decreases during the test, the global volume of wear being a decreasing function of T. For the quenched/tempered state, the wear rate decreases with the increase of the normal force, this decrease is less than 30% of the normalised state value. The material heating during the wear tests is well correlated with the friction dissipated power, but remains small, except in extreme cases (v maximum, great friction at high temperatures). These results suggest the existence of two wear mechanisms: abrasion by sample debris and burrs emission by plastic flow. The abrasion is probably the dominating mechanism for the tests carried out at the lowest temperatures. The plastic flow becomes a significant component at the highest temperatures. Using a contact model, we discuss to what extent the influence of the temperature and the strain rate on the steel hardness and ductility could explain the temperature and the sliding velocity effect on wear. Other phenomena are probably present: the influence of the steel microstructure and the lubricant on the size and/or the number of particles responsible for abrasion.  相似文献   

14.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

15.
《Wear》2006,260(7-8):915-918
Past studies with PTFE nanocomposites showed up to 600× improvements in wear resistance over unfilled PTFE with the addition of Al2O3 nanoparticles. Irregular shaped nanoparticles are used in this study to increase the mechanical entanglement of PTFE fibrils with the filler. The tribological properties of 1, 2, 5 and 10 wt.% filled samples are evaluated under a normal pressure and sliding speed of 6.3 MPa and 50.8 mm/s, respectively. The wear resistance was found to improve 3000× over unfilled PTFE with the addition of 1 wt.% nanoparticles. The 5 wt.% sample had the lowest steady state wear rate of K = 1.3 × 10−7 mm3/N m and the lowest steady friction coefficient with μ = 0.21.  相似文献   

16.
The temperature dependence of the solid particle erosion of polydimethylsiloxane (PDMS) using aluminum oxide particles was investigated between the temperatures of ?178 and 17 °C for a variety of angles of attack using a novel cryogenic abrasive jet machining apparatus. It was found that the most efficient machining of PDMS (volume removed per kinetic energy of erodent) occurred at approximately ?178 °C, at angles of attack between 30° and 60° from the surface. A previously developed surface evolution model was used to predict the size and shape of unmasked channels at various temperatures. A good agreement between the predicted and measured channel profiles was obtained when the average blasting temperature was between approximately ?127 and ?178 °C. At ?82 °C, the fit was poorer, probably because of an increase in particle embedding. Although it was demonstrated that PDMS could be machined at temperatures above its glass transition, the erosion rate increased by a factor of more than 10 when the machining temperature was below this point.  相似文献   

17.
《Wear》2006,260(7-8):766-782
The influence of the alkyl chain length and of the anion on the lubricating ability has been studied for the room-temperature ionic liquids (IL) 1-n-alkyl-3-methylimidazolium X [X = PF6; n = 6 (L-P106). X = BF4; n = 2 (L102), 6 (L106), 8 (L108). X = CF3SO3; n = 2 (L-T102). X = (4-CH3C6H4SO3); n = 2 (L-To102)]. Neat IL have been used for AISI 52100 steel-ASTM 2011 aluminium contacts in pin-on-disk tests under variable sliding speed. While all IL give initial friction values lower than 0.15, real-time sharp friction increments related to tribochemical processes have been observed for L102 and L-P106, at room-temperature and at 100 °C. Electronic microscopy (SEM), energy dispersive (EDS) and X-ray photoelectron (XPS) spectroscopies show that wear scar surfaces are oxidized to Al2O3 and wear debris contain aluminium and iron (for L102) fluorides. For L-P106, the steel surface is covered with a P-containing tribolayer. A change of anion (L-T102; L-To102) reduces friction and wear, but the lowest values are obtained by increasing the alkyl chain length (L106; L108). When the more reactive L102 and L-P106 are used as 1 wt.% base oil additives at 25 °C, tribocorrosion processes are not observed and a friction reduction (69–75% for 1 wt.% L102) and a change from severe (10−3 mm3 m−1) to mild wear (10−4 to 10−6 mm3 m−1) is obtained with respect to the neat IL. 1 wt.% IL additives also show good lubricating performance at 100 °C.  相似文献   

18.
《Wear》2004,256(1-2):66-72
Cavitation erosion tests of three Fe–Mn–Si–Cr shape memory alloys were carried out at speed 34 and 45 m/s using a rotating disc rig, and their cavitation damage has been investigated by comparison with a referring 13Cr–5Ni–Mo stainless steel used for hydraulic turbine vanes. The research results proved that the cavitation erosion of the Fe–Mn–Si–Cr shape memory alloys is a failure of low cycle fatigue and fracture propagates along grain boundaries. After 48 h cavitation erosion the cumulative mass losses of the studied alloys at speed 45 m/s are more than theirs at speed 34 m/s; however, the effect of velocity on cavitation damage of the Fe–Mn–Si–Cr alloys is much lower than that of 13Cr–5Ni–Mo stainless steel. The cumulative mass loss of the 13Cr–5Ni–Mo stainless steel are 26.3 mg at speed 45 m/s and 3.2 mg at speed 34 m/s, and the mass losses of the Fe–Mn–Si–Cr alloys are within the range of 3.6–7.3 mg at speed 45 m/s and 2.0–4.1 mg at speed 34 m/s. The surface elasticity of the Fe–Mn–Si–Cr shape memory alloys is better than that of the 13Cr–5Ni–Mo stainless steel, and the effect of surface elasticity on cavitation damage increases with velocity. The excellent surface elasticity of the cavitation-induced hexagonal closed-packed (h.c.p.) martensite plays a key role in contribution of phase transformation to the cavitation erosion resistance of the Fe–Mn–Si–Cr shape memory alloys. The cavitation damage of the studied alloys at speed 45 m/s mainly depends on their surface elasticity, and the variation of 48 h cumulative mass loss (Δm) as a function of the elastic depth (he) can be expressed as Δm=2.695+[1371.94/(4(he−46.83)2+12.751)] with a correlation factor of 0.99345.  相似文献   

19.
《Wear》2002,252(11-12):992-1000
The solid particle erosion behaviour of unidirectional carbon fibre (CF) reinforced polyetheretherketone (PEEK) composites has been characterised. The erosion rates of these composites have been evaluated at different impingement angles (15–90°) and at three different fibre orientations (0, 45, and 90°). The particles used for the erosion measurements were steel balls with diameter of 300–500 μm and impact velocities of 45 and 85 m/s. The unidirectional CF reinforced PEEK composites showed semi-ductile erosion behaviour, with maximum erosion rate at 60° impingement angle. The fibre orientations had a significant influence on erosion rate. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms are discussed.  相似文献   

20.
Abrasive slurry jet micro-machining (ASJM) was used to machine channels in glass, PMMA, zirconium tin titanate, and aluminum nitride. The channel roughness was measured as a function of the ASJM process parameters particle size, dose, impact velocity, and impact angle. The steady-state roughness of the channels was reached relatively quickly for typical ASJM abrasive flow rates. The roughness of channels having depth-to-width aspect ratios up to about 0.25 could be reduced by approximately 35% compared to the roughest channel by decreasing particle impact velocity and angle. However, machining at such conditions reduced the specific erosion rate by 64% on average. It was therefore quicker to post-blast reference channels (225 nm average root mean square (Rrms) roughness) using process parameters selected for peak removal. It was also found that the roughness of reference channels could be reduced by about 78% by post-blasting using 3 μm diameter silicon carbide particles at 15° jet incidence. The smoothest post-blasted channels had an Rrms roughness of about 23 nm in glass, PMMA, and zirconium tin titanate, and 170 nm in aluminum nitride. Computational fluid dynamics was used to predict the particle impact conditions that were used in a model to predict the steady-state roughness due to ductile erosion with an average error of 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号