首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谢萍  翁居轼  冯晖 《广东化工》2012,39(17):168-170
文章利用Aspen Plus化工模拟软件中的严格计算法RadFrac单元操作模块对椰子油脂肪酸进行了连续减压精馏分离模拟。考察了塔板数、回流比、进料位置对分离效果的影响。结果表明:采用两个精馏塔B1塔和B2塔串联操作,操作压强为2500 Pa(绝压),原料进料质量流率20 kg/h,B1塔理论板数为15,第8块塔板进料,回流比为2(体积比),塔顶可得到产物辛酸的质量流率为8.675 kg/h,质量分数可达98.58%及回收率可达99.83%。塔底物料经B2进一步分离,B2塔板数为15,第9块塔板进料,回流比为1,塔顶可得到产物癸酸的质量流率为10.86 kg/h,质量分数为99.79%及回收率为98.81%。模拟结果对实验研究及工业化生产具有指导意义。  相似文献   

2.
提出了非均相层析-萃取精馏分离工艺,并基于Aspen Plus对该分离过程进行模拟研究,以得到质量分数为98.3%的异丙醚和99%的异丙醇,水相异丙醚的质量分数小于2×10-5,异丙醇的质量分数小于1×10-4为目标,确定了粗馏塔、醚精制塔、异丙醇精制塔、乙二醇回收塔最佳工艺参数。粗馏塔的理论塔板数为26,进料板位置为第13块理论板,摩尔回流比为0.14。醚精制塔的理论塔板数为23,进料板位置分别为第3和15块理论板,摩尔回流比为0.92。异丙醇精制塔的理论塔板数为25,进料板位置为第3和第18块理论板,摩尔回流比为2.85。乙二醇回收塔的理论塔板数为40,进料板位置为第15块理论板,摩尔回流比为0.08。总体工艺具有流程简单、产品纯度高、易于操作的特点。  相似文献   

3.
基于Aspen Plus模拟软件,选用UNIFAC物性方法对变压精馏分离C_4与甲醇共沸物过程进行模拟与优化。考察了理论板数、回流比及进料位置对产品质量分数和能耗的影响。确定了较佳工艺条件:加压塔理论板数为30,回流比为1.2,原料进料位置分别为第15块塔板,塔釜C_4质量分数为99.99%;低压塔理论板数为20,回流比为1.2,进料位置为第9块塔板,塔釜甲醇质量分数为99.99%。与传统萃取精馏相比,变压精馏能耗稍高,但无需引入其他组分。  相似文献   

4.
利用Aspen Plus模拟软件对完全热集成变压精馏分离甲酸和水的过程进行了模拟,选用NRTL-HOC物性计算模型,模型的二元交互作用参数通过实验数据进行回归。在完全热集成下,分析了理论板数、回流比及进料位置对产品质量分数和塔釜能耗的影响。确定了较佳工艺条件:减压塔理论板数为34,回流比为7,原料和循环物料进料位置分别为第6和第14块塔板,塔顶甲酸质量分数为0.991;常压塔理论板数为32,回流比为8.6,进料位置为第17块塔板,塔顶水质量分数为0.994。与传统变压精馏比较,完全热集成变压精馏降低加热蒸汽能耗48.6%,冷凝水能耗48.9%,且无需附加再沸器或冷凝器。通过间歇变压精馏实验,验证了工艺的可行性。  相似文献   

5.
通过Aspen Plus软件对氯甲烷脱二氧化碳连续精馏过程进行模拟,分别考察了理论板数、进料位置、回流比和塔顶采出率对塔釜二氧化碳含量和氯甲烷收率的影响。结果表明:在理论板数为40,第10块塔板位置进料,回流比24(mol/mol),塔顶采出率0.013(mol/mol)时,塔釜氯甲烷产品中二氧化碳摩尔分数为4×10~(-6),氯甲烷收率为99.86%。根据模拟结果,进行填料塔、塔顶冷凝器、塔釜再沸器工程设计,成功应用于实际生产制得高纯度氯甲烷,氯甲烷质量分数大于99.9%,二氧化碳质量分数小于0.0015%。  相似文献   

6.
采用萃取精馏工艺对甲醇和丙酸甲酯二元共沸物进行分离,筛选出以苯酚为萃取剂,借助Aspen Plus软件对该过程进行模拟研究,通过单因素优化详细考察了两塔的理论板数、进料位置、回流比以及溶剂比等工艺参数对塔顶产品质量分数和再沸器能耗的影响,确定了较优的工艺参数:萃取精馏塔理论板数32块,待分离原料进料位置第16块,萃取剂进料位置第6块,回流比为1.4,溶剂比为1.3,塔顶甲醇产品质量分数为99.9%;溶剂回收塔理论塔板数24,进料位置第6块,回流比为1.3,塔顶丙酸甲酯产品质量分数为99.9%。在上述模拟优化基础上,进一步通过实验验证了萃取精馏工艺的可行性。最后对某公司5 600 t/a的丙酸甲酯和甲醇混合液进行工程设计,为该二元共沸物的分离提供依据。  相似文献   

7.
王剑舟 《浙江化工》2012,43(5):29-33
以AspenPlus软件为平台,对氨蒸馏工艺的蒸氨塔进行了模拟计算。通过对塔板数、进料位置、回流比与进料热状态的模拟,研究了各参数的影响特点。认为塔板数宜取大一些,进料位置靠近塔下端有利,回流比的选择应首先考虑满足产品质量,进料温度接近泡点为佳。确定塔板数8,在第6块塔板处进料,进料温度100℃,回流比1,灵敏板为第7块塔板,得到塔顶液氨产品氨摩尔浓度〉99.5%,塔底残留液氨摩尔浓度〈5%,满足设计规定。  相似文献   

8.
电解法制己二腈回收丙烯腈流程的模拟与优化   总被引:1,自引:0,他引:1  
采用适合于部分互溶体系的NRTL模型作为精馏模拟计算的物性方法。分析了理论塔板数、进料位置、回流比、塔顶采出量等操作参数对过程的影响,并得出了最佳工艺参数为:采用16块理论塔板,回流比为0.6,第6板进料,塔顶采出量为120kg/h时,可以得到99.2%(质量分数)的丙烯腈。模拟结果可指导工业过程的设计。  相似文献   

9.
对醪塔、丁醇塔、丙酮和乙醇塔进行模拟计算与参数优化。组成为水980 kg/h,丁醇11 kg/h,丙酮6 kg/h,乙醇3 kg/h的混合进料,优化计算结果:醪塔的理论板为11块,从第3块板进料,回流比为1;第一丁醇塔,理论板为40块,从第8块板进料,从第18块侧线采出,回流比为3;第二丁醇塔理论板为8,第5块板进料,回流比为2;丙酮塔理论板为35,第27块板进料,回流比为4.5;乙醇塔理论板为45,第33块板进料,回流比为3.5。  相似文献   

10.
陈琦  顾正桂 《现代化工》2014,(1):145-148
运用Aspen Plus模拟软件对正丁醇-异丁醇萃取精馏塔进行过程模拟,考察了蒸馏流率、理论塔板数、原料和溶剂的进料位置、回流比、溶剂比对正丁醇异-丁醇混合物分离效果的影响。通过正交化设计优化和验证实验,得到最佳萃取精馏塔的操作条件,即蒸馏流率D=17 kg/h,理论塔板数N=49,原料进料位置N F=29,溶剂进料位置N S=8,回流比R=6,溶剂比S∶F=11∶1。研究结果表明,在最佳操作条件下,塔顶异丁醇质量分数可以提高到99.80%,得率为89.38%,塔底正丁醇质量分数可达到97.53%,得率为99.96%,验证实验结果与模拟结果相对误差1%。  相似文献   

11.
为研究离子液体在反应精馏中的作用,采用离子液体1-丁基-3-甲基咪唑硫酸氢盐([BMIM]HSO4)作为催化剂,对乙酸和乙醇合成乙酸乙酯的反应精馏流程进行了计算模拟。在确定了参数的酯化反应动力学的基础上,用Aspen Plus软件建立了反应精馏流程,研究了催化剂用量、精馏段理论板数、反应段理论板数、乙醇进料位置、进料摩尔比、持液量及回流比等参数对反应精馏过程的影响。研究结果表明,塔顶乙酸乙酯的质量分数随催化剂用量、精馏段理论板数、反应段理论板数和持液量增大而增大,工艺流程存在最佳回流比以及最佳进料酸醇摩尔比。得到的优化条件如下:离子液体与乙酸摩尔比为1:2.5,进料酸醇摩尔比为4:1,理论塔板数为21块,乙酸和催化剂在第7块理论塔板进料,乙醇在第19块理论塔板进料,塔板持液量0.1L,回流比为4,塔顶乙酸乙酯的质量分数可以达到98.73%。  相似文献   

12.
运用Aspen Plus模拟软件进行了共沸精馏分离烯丙醇和水,选用苯作为本次实验的共沸剂。经模拟优化后得知:T-1常压精馏塔理论板数30块,进料位置第14块,回流比1.0;T-2常压精馏塔理论塔板数10块,进料位置第3块,回流比2.1。比模拟优化前理论板数减少,并且烯丙醇的质量分数也达到了99.9%以上,同时再沸器的热负荷下降。  相似文献   

13.
利用COSMO-SAC模型对常用萃取剂进行筛选,进而确定对二甲苯适合作为分离乙醇-丙酸乙酯二元共沸物系的萃取剂,并利用汽液平衡实验验证了所选萃取剂的分离效果。结果表明对二甲苯能够分离乙醇-丙酸乙酯共沸物系。采用Aspen Plus模拟软件对乙醇-丙酸乙酯-对二甲苯三元体系进行了连续萃取精馏模拟,并获得了适宜的工艺参数:萃取精馏塔中,理论塔板数为60块,原料进料位置为第50块塔板,萃取剂进料位置为第25块塔板,回流比为7,溶剂比为0.8,塔顶乙醇的含量可达到99.85%;溶剂回收塔中,理论塔板数为30块,进料塔板的位置为第11块塔板,回流比为6,塔顶得到丙酸乙酯的质量分数为99.0%。  相似文献   

14.
陈卓  张治青  王伟  刘芬  张娟娟 《粘接》2023,(9):115-118
设计了一种用于处理乙酸仲丁酯副产物回收工业级乙酸仲丁酯的新工艺,并应用Aspen软件对该工艺中共沸精馏塔的理论塔板数、回流比、共沸剂的量、进料位置及进料温度和甲醇回收塔的理论塔板数、回流比及进料位置等工艺参数进行灵敏度优化与分析。最终优化后的模拟结果为:共沸精馏塔处理负荷按2.4 t/h计时,其塔板数为54块,塔顶的回流比为10,共沸剂进料量为1.8 t/h,进料位置为第30块板,进料温度为40℃,塔釜乙酸仲丁酯纯度99.0%达到工业级;与乙酸仲丁酯共沸精馏塔配套负荷的甲醇回收塔,理论板数为24块,塔顶的回流比为8,原料液进料为第20块板,甲醇纯度达到96%以上,甲醇含水量小于0.15%,达到工业一等品质量要求。经济效益分析的结果表明本工艺具有良好的经济效益。  相似文献   

15.
《山东化工》2021,50(4)
基于Aspen Plus概念设计,提出了一种普通精馏-液液萃取-萃取精馏相结合的分离工艺,得到了苯和异丙醇的质量分数分别为99. 9%和99. 2%,并利用灵敏度分析,确定各塔的关键模拟参数:初分塔的理论板数为5,进料位置为第2块理论板,塔顶采出量为300. 0kg/h;脱水塔的理论板数为12,进料位置为第6块理论板,塔顶采出量为117. 0 kg/h;萃取精馏塔的理论板数为36,进料位置为第30块和第3块理论板,塔顶采出量为100. 8 kg/h;萃取剂回收塔的理论板数为10,进料位置为第4块理论板,塔顶采出量为16. 2 kg/h;液液多级萃取塔的理论板数为9。  相似文献   

16.
张宏坤  左茂晟  李琳 《化学世界》2020,61(6):447-453
基于对废弃酯类合成润滑油的氧化变质成分分析,利用化工流程模拟软件(Aspen Plus)模拟出一种高效分离和回收酯类合成润滑油的工艺。逆流双效精馏分离回收工艺中,液相的非理想性计算采用热力学活度系数模型(NRTL);气相模型采用热力学状态方程(SRK)、蒸汽表状态方程(STEAMNBS),其中,热力学状态方程和蒸汽表状态方程二元相互作用参数由气液相平衡(VLE)数据回归。在变压逆流双效精馏模型中,通过合理调整撕裂流股并为其赋予初值,使循环物料计算收敛。优化分析常压塔(T_1)和加压塔(T_2)的理论塔板数、进料位置及常压塔(T_1)和加压塔(T_2)回流比对分离效果的影响。结果表明:将工艺参数设定为常压塔(T_1)理论塔板数7块,进料位置在第3块塔板,回流比9.8,塔顶温度221℃,全塔压力100kPa;加压塔(T_2)理论塔板数7块,进料位置在第1块塔板,回流进料板数为7块,回流比4.6,塔顶温度293℃,全塔压力150kPa,分离得到的润滑油癸二酸二异辛酯产品质量分数为99.101%,回收率99.587%;与单效精馏相比,逆流双效精馏工艺能耗较低,再沸器和冷凝器热负荷分别降低16.6%和14.5%。  相似文献   

17.
高蕾 《化工生产与技术》2012,19(3):21-23,70
以试验数据为基础.采用ASPENPLUS建立乙酸异丙酯提浓塔的模型,并考察进料板位置、回流比、塔板数等操作条件对目标产物的影响。结果表明,当进料板位置2-17、回流质量比1.5。2.5、理论塔板数为25块时,提浓塔塔釜采出的低沸物的质量分数在O.02%以下。塔釜采出乙酸异丙酯的质量分数可达到98.68%;尤其当回流比为1.5时,比原操作条件的塔釜热负荷减少24%。  相似文献   

18.
采用Aspen Plus流程模拟软件对叔丁醇-水体系的萃取精馏过程进行流程模拟,采用离子液体1-乙基-3-甲基咪唑醋酸盐([EMIM][AC])和传统溶剂乙二醇分别作为萃取剂,并对二者分别作为萃取剂的流程进行对比.通过灵敏度分析工具(Sensitivity)考查了溶剂比、理论塔板数、回流比、原料进料位置和溶剂进料位置对分离效果的影响.结果显示,采用[EMIM][AC]萃取分离叔丁醇-水二元共沸体系的最佳工艺优化条件为:全塔理论塔板数为25,回流比为0.9,溶剂比为0.7,原料和萃取剂进料位置分别为第15块理论板和第2块理论板,塔顶关键轻组分叔丁醇质量分数为0.999,收率为99.9%,同时,[EMIM][AC]的回收率达到100%.与乙二醇相比,[EMIM][AC]作为萃取剂的萃取精馏塔塔顶和塔底能耗分别减少了32.72%和45.19%.  相似文献   

19.
借助Aspen Plus,对丙酮和乙醇体系精馏过程进行了模拟计算,采用简捷法、严格精馏计算法分别对初始组分为含丙酮60%和乙醇40%的混合液(F=1000kg·h~(-1),P=0.12MPa,T=30℃)进行模拟,再采用塔设计规定,设定塔顶丙酮含量99.17%,塔底乙醇含量99%,计算出实际回流比为R=2.71,塔底馏出物/进料摩尔比为0.454。再采用灵敏度分析模拟得出结果为实际理论塔板数30块、进料板位置23块时塔热负荷最低,其再沸器热负荷为336.713k W。塔内填充CY700型不锈钢丝网波纹填料,塔径为0.65m。  相似文献   

20.
杨正伟  孙启文  张宗森 《化学工程》2014,42(10):29-33,40
根据高温费托合成反应水的组成特点,采用连续精馏塔对反应水进行初分,以脱除大部分水和有机酸,同时,将非酸类含氧有机物提浓,利于后续化学品分离。首先采用NRTL热力学方法对流程进行了模拟,考察了塔板数、进料位置、回流比等工艺条件对分离结果的影响,得到了最优操作条件,然后采用实验室小型精馏塔对高温费托合成中试副产反应水进行了实验验证。结果表明:塔顶有机物质量分数可提高到75%以上,有机酸质量分数为0;塔釜采出物中非酸有机物质量分数小于0.01%,模拟最优条件为塔板数35块、进料位置为第15块,回流比为4。实验值与模拟值吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号