首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Thin films of cadmium oxide were thermally deposited on glass substrates at partial pressures of oxygen, pO2 in the range 1.33×10−2 to 0.133 Pa at a substrate temperature of 160 °C. Energy dispersive analysis of X-ray fluorescence (EDAX) revealed that the CdO films deposited at pO2 value of 4.00×10−2 Pa were nearly stoichiometric. X-ray diffractometry (XRD) confirmed the polycrystalline nature of the film structure. All the films showed an fcc structure of the NaCl-type, as the dominant phase. The films exhibited preferred orientation along the (1 1 1) diffraction plane. The texture coefficients calculated for the various planes at different oxygen partial pressures (pO2) indicated that the maximum preferred orientation of the films occurred along the (1 1 1) plane at an oxygen partial pressure of 4.00×10−2 Pa. This was interpreted in terms of oxygen chemisorption and desorption processes. The lattice parameters determined from the diffraction peaks were in the range 4.655–4.686 Å. The average lattice parameter a0 found by extrapolation using the Nelson–Riley function was 4.696 Å. Both the lattice parameter and the crystallite size were found to increase with increased partial pressure of oxygen. On the other hand, the strain and dislocation density were found to decrease as the partial pressure of oxygen was raised. A maximum (80%) in the optical transmittance at λ=600 nm and minimum in the electrical resistivity (9.1×10−4 Ω cm) of the films occurred at an optimum partial pressure of oxygen of 4.00×10−2 Pa. The results are discussed.  相似文献   

2.
Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10−3 s−1 to 1 s−1. Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae.  相似文献   

3.
Nanocrystalline PbS and Sn doped PbS thin films were successfully deposited on suitably cleaned glass substrate at constant room temperature, using the chemical bath deposition technique. Before, adding Sn doping content, the pure PbS thin films were deposited at room temperature for several dipping times to optimize the deposition time. After deposition, the films were also annealed at 400 °C for 1 h in air. The crystal structures of the films were determined by X-ray diffraction studies. The films were adherent to the substrate and well crystallized according to cubic structure with the preferential orientation (2 0 0). The crystallite size of the pure PbS thin films at optimized deposition time 30 min was found to be 40.4 nm, which increased with Sn content in pure PbS thin film. The surface roughness was measured by AFM studies. The band gaps of the films were determined by transmission spectra. Experiments showed that the growth parameters, doping and annealing, influenced the crystal structure, and optical properties of the films.  相似文献   

4.
The hot deformation behavior of (0.2 um 1.5 vol.% + 10 um8.5 vol.%) bimodal size SiCp/AZ91 magnesium matrix composite fabricated by stir casting was investigated at the temperature of 270–420 °C and strain rate of 0.001–1 S−1. The flow stress at the strain of 0.5 was used for kinetic analysis. Results indicate that dislocation climb is likely to be the main deformation mechanism responsible for the present composite. By evaluating the efficiencies of power dissipation and instability parameters, the processing maps are developed to optimize the hot working processing. Two domains of dynamic recrystallization are found in the processing map. One exists at the temperature of 270–370 °C and strain rate of 0.001–0.01 s−1 with maximum dissipation efficiency of 38%; the other exists at 420 °C and 0.01 s−1 with peak dissipation efficiency of 24%. The instability region of flow behavior can also be recognized at the temperature of 270–320 °C and the strain rate of 0.1–1 s−1. The characteristic microstructures predicted from the processing map agree well with the result of microstructure observations.  相似文献   

5.
Isothermal forging was a critical step process to fabricate the high-performance nickel-based superalloy. The temperature and strain rate served the most critical role in determining its microstructure and mechanical properties. In this article, we employed the hot compression to simulate the isothermal forging process upon the temperature ranging from 1000 °C to 1100 °C in combination with a strain rate of 0.001–1.0 s 1 for a new P/M nickel-based alloy. The activation energy was determined as 903.58 kJ/mol and the processing maps at a strain range of 0.4–0.7 were developed. The instability domains were more inclined to occur at strain rates higher than 0.1 s 1 and manifested in the form of adiabatic shear bands. The map further demonstrated that the regions with peak efficiency of 55% were located at 1080 °C/0.0015 s 1 and 1095 °C/0.014 s 1, respectively. Obvious dynamic recrystallization could be detected at the strain rate 0.01 s 1 leading to a significant flow stress drop and the grain growth was remarkably triggered under 1100 °C. The findings can shed light on the forging processing optimization of the new nickel-based superalloy.  相似文献   

6.
《Materials Letters》2007,61(8-9):1763-1766
ZnO films deposited on glass, quartz and Al on silicon mono-crystal Si (100) substrates by using the wire explosion technique were investigated by X-ray diffraction (XRD), UV–VIS spectroscopy, scanning electron (SEM) and atomic force microscopy (AFM) measurements. X-ray diffraction measurements have shown that ZnO films are mainly composed of (100), (002) and (101) orientation crystallites. The post-deposition thermal treatment at 600 °C temperature in air has shown that the composite of Zn/ZnO film was fully oxidized to ZnO film. The XRD spectra of the film deposited in oxygen atmosphere at room temperature present high intensity dominating peak at 2h = 36, 32° corresponding to the (101) ZnO diffraction peak. The small fraction of the film (7%) corresponds to the (002) peak intensity at 2h = 34, 42°. This result indicates the good crystal quality of the film and hexagonal wurtzite-type structure deposited by zinc wire explosion. The optical absorption spectra shows the bands at 374, 373 and 371 nm corresponding to deposition conditions. The SEM analysis shows that ZnO films presented different morphologies from fractal network to porous films depending on deposition conditions. AFM analysis revealed the grain size ranges from 50 nm to 500 nm. The nanoneedles up to 300 nm in length were found as typical structures in the film. It was demonstrated that the wire explosion technique is a feasible method to produce ZnO crystalline thin films and nanostructures.  相似文献   

7.
《Materials Letters》2006,60(13-14):1559-1564
Lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on Si (100) and Pt(111)/Ti/SiO2/Si(100) substrates by a new reverse dip-coating method of sol–gel process. The method was first proposed and applied to coat films. It has several advantages over the conventional sol–gel coating method, including: no consideration of the mechanical transmission that is difficult to manipulate with costly exact apparatus in classical dip-coating procession, convenient processing control, simplicity, low cost, less pollution, and easy fabrication films on large areas and irregular shaped devices etc. This paper studied the factors including PbO content of precursor, TiO2 and ZrO2 layers, which are related to raw materials of PZT precursor and influence greatly the crystal orientation of the final thin films. We find that the PZT films deposited by precursor with 20% mole excess Pb displayed strong (111) preferred orientation, with 5% mole excess Pb showed a little (100) orientation and pyrochlore phase. The precursor with 10% mole excess Pb was found prompting the PZT films phase transformation with (110) preferred orientation. In addition, the results show that the TiO2 and ZrO2 seeding layers had totally different effects on the preferred orientation of PZT films. The films with TiO2 seeding layer were highly (111) oriented and exhibited better ferroelectric properties (remnant polarization Pr = 14.2 μC cm 2, coercive field Ec = 59.1 Kv cm 1) than those of the films with ZrO2 seeding layer shown (100) orientation (Pr = 7.4 μC cm 2, Ec = 42.9 Kv cm 1).  相似文献   

8.
Isothermal compression tests of as-cast Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb (TC21) titanium alloy are conducted in the deformation temperature ranging from 1000 to 1150 °C with an interval of 50 °C, strain rate ranging from 0.01 to 10.0 s−1 and height reductions of 30%, 45%, 60% and 75% on a computer controlled Gleeble 3500 simulator. The true stress–strain curves under different deformation conditions are obtained. Based on the experimental data, the effects of deformation parameters on the hot deformation behavior of as-cast TC21 alloy were studied. The deformation mechanisms of the alloy in the whole regimes are predicted by the power dissipation efficiency and instability parameter and further investigated through the microstructure observation. It is found that at the height reductions of 30%, 45% and 60%, the softening of stress–strain curves at high strain rate (>1.0 s−1) is mainly associated with flow localization, which is caused by local temperature rise, whereas at low strain rate, the softening is associated with dynamic recrystallization (DRX). However, the instability showed in flow localization occurs at low strain rate of 0.01 s−1 when the height reduction reaches 75%. In addition, the effects of strain rate, deformation temperature and height reduction on microstructure evolution are discussed in detail, respectively.  相似文献   

9.
In this study, strain rate and low temperature dependencies of the viscoelastic behaviour of the T700GC/M21 composite material are characterised and analysed. Dynamic tests for various environmental temperatures are performed on hydraulic jack equipped with an environmental chamber. Three speeds, between 8.33 · 10−4 m s−1 and 0.5 m s−1, at three temperatures (20 °C, −40 °C and −100 °C) are tested. The increase of the shear modulus with the decrease of the temperature is more pronounced between −40 °C and −100 °C than between 20 °C and −40 °C. Complementary DMA (Dynamic Mechanical Analysis) tests are performed on the M21 epoxy resin to characterise the viscoelastic behaviour of the matrix which contributes to the viscoelastic behaviour of the laminate. DMA tests highlight a low temperature transition called β transition (−67 °C for the 1 Hz test) which is responsible of the larger increase of the storage modulus, for the epoxy matrix, between −40 °C and −100 °C. Consequently the β transition could also be at the origin, for the composite, of the observed larger increase of the shear modulus with respect to the strain rate, for strain rates higher than 10 s−1.  相似文献   

10.
In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH4) and hydrogen (H2) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp3 content is decreased from 75.2% to 24.1% while the sp2 content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.  相似文献   

11.
The objective of this study is to develop a hot diffusion-compression bonding process for cladding low carbon steel (LCS) to high chromium cast iron (HCCI) in solid-state. The influence of temperature (950–1150 °C) and strain rate (0.001–1 s−1) on microstructure, hardness and bond strength of the HCCI/LCS bimetal were investigated. The interface microstructure reveals that the unbonded region can only be found for 950 °C due to lack of diffusion, while the intergrowth between the constituent metals occurred at and above 1100 °C. When bonding temperature increases to 1150 °C, a carbide-free zone was observed near the interface on the HCCI layer, and the thickness of the zone decreases with an increase of bonding strain rate. These evolutions indicate that the bond quality was improved by raising temperature and reducing strain rate due to the increase of element diffusion. The hot compression process of the bonding treatment not only changes the carbide orientation of the HCCI, but also increases the volume fraction of Cr–carbide. Based on the microstructural examinations and mechanical tests, the optimum bonding temperature and bonding strain rate are determined to be 1150 °C and 0.001 s−1, respectively.  相似文献   

12.
《Thin solid films》2006,515(2):509-512
Silicon nitride (Si3N4) is an important insulator, frequently used in VLSI technology and for encapsulation. Conventionally it is prepared by low pressure and plasma-enhanced chemical vapour deposition, but may also be successfully deposited by RF sputtering. In the present work the sputtering process was characterised, together with some measurements on the high-field DC electrical properties in sandwich samples with Au electrodes. Films were Ar-sputtered using a Si3N4 sputtering target at gas pressures up to 2.12 Pa and RF discharge powers of 60–200 W. The deposition rate R was in the range 0.03–0.19 nm s 1 and was directly proportional to the discharge power and varied linearly with the pressure. Au electrodes formed sandwich structures with thicknesses of 50 nm–1 μm. Conductivity was essentially ohmic below 300 nm, while for the thicker films space-charge limited conductivity, dominated by an exponential distribution of traps, was observed. A mobility value of μ = 2.89 × 10 6 m2 V 1 s 1 was derived from temperature measurements, and further analysis of the JV data indicated a thermally generated electron concentration of 3.23 × 1019 m 3 and a trap concentration of 1.57 × 1024 m 3. It was concluded that this method is suitable for the deposition of thin films, which have similar electrical properties to those prepared by chemical vapour deposition methods.  相似文献   

13.
《Materials Letters》2007,61(14-15):2961-2964
Zinc oxide thin films (ZnO) with different thickness were prepared on Si (111) substrates using low energy O+ assisted pulse laser deposition (PLD). The structural and morphological properties of the films were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. The quality of ZnO films was also examined by using Rutherford backscattering spectroscopy/ion channeling (RBS/C) techniques. XRD showed that there was only one sharp diffraction peak at 2θ = 34.3° with the full width at the half maximum (FWHM) of around 0.34° for two ZnO samples, which also indicated that ZnO thin films had a good c-axis preferred orientation. Results of Rutherford backscattering and ion channeling clearly indicated that the Zn:O ratio in zinc oxide thin film approached to unity and the ZnO thin film grown by low energy O+ assisted pulse laser deposition had a polycrystalline structure. In the case of ZnO film fabricated by low energy O+ assisted pulse laser deposited under identical experimental conditions except growth time, AFM analysis has shown that the root mean square (RMS) roughness (2.37 nm) of thinner ZnO film (35 nm) was far below that (13.45 nm) of the thicker ZnO film (72 nm).  相似文献   

14.
《Thin solid films》2002,402(1-2):167-171
Boron nitride has for the first time been deposited from gaseous BBr3 and NH3 by means of atomic layer deposition. The deposition temperatures were 400 and 750 °C, and the total pressure was 10 torr. The BN films, deposited on silica substrates, showed a turbostratic structure with a c-axis of 0.70 nm at a deposition temperature of 750 °C as determined by X-ray diffraction. The films deposited at 400 °C were significantly less ordered. The film density was obtained by means of X-ray reflectivity, and it was found to be 1.65–1.70 and 1.90–1.95 g cm−3 for the films deposited at 400 and 750 °C, respectively. Furthermore, the films were, regardless of deposition temperature, fully transparent and very smooth. The surface roughness was 0.3–0.5 nm as measured by optical interferometry.  相似文献   

15.
《材料科学技术学报》2019,35(10):2409-2421
Uniaxial compression tests were carried out on an Al-Cu-Li alloy at a temperature range of 300–500 °C and a strain rate range of 0.001–10 s−1. Four representative instability maps based on Gegel, Alexander-Malas (A-M), Kumar-Prasad (K-P) and Murty-Rao (M-R) criteria were constructed. Through formula deduction and microstructural observation, it can be concluded that M-R criterion is more accurate than K-P criterion, and the first two criteria are better than Gegel and A-M criteria. From a power dissipation map and a M-R instability map, the optimized processing parameters are 480–500 °C/0.001–0.1 s−1 and 420–480 °C/0.1-1 s−1. The corresponding microstructural analysis shows that dynamic recovery and partial dynamic recrystallization are main dynamic softening mechanisms. Transmission electron microscopy observation indicated that a large number of primary coarse T1 (Al2CuLi) particles precipitated in the homogenized specimen. After deformation at 500 °C, most of the primary T1 particles dissolved back into the matrix, and secondary fine T1 particles precipitated at deformation-induced dislocations, high angle grain boundaries and other dispersed particles.  相似文献   

16.
The high temperature flow behavior of as-extruded Ti–47.5Al–Cr–V alloy has been investigated at the temperature between 1100 °C and 1250 °C and the strain rate range from 0.001 s 1 to 1 s 1 by hot compression tests. The results showed that the flow stress of this alloy had a positive dependence on strain rate and a negative dependence on deformation temperature. The activation energy Q was calculated to be 409 kJ/mol and the constitutive model of this material was established. By combining the power dissipation map with instability map, the processing map was established to optimize the deformation parameters. The optimum deformation parameter was at 1150 °C–1200 °C and 0.001 s 1–0.03 s 1 for this alloy. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The material underwent instability deformation at the strain rate of 1 s 1, which was predicted by the instability map. The surface fracture was observed to be the identification of the instability.  相似文献   

17.
《Materials Letters》2007,61(14-15):3030-3036
Transparent conducting thin films of F:SnO2 have been deposited onto preheated glass substrates by a spray pyrolysis technique using pentahydrate stannic chloride (SnCl4·5H2O) and ammonium fluoride (NH4F) as precursors and mixture of water and propane-2-ol as solvent. The concentration of SnCl4·5H2O and NH4F is kept fixed and the ratio of water and propane-2-ol solvent in the spraying solution is varied. A fine spray of the source solution using air as a carrier gas has grown films of thickness up to 995 nm. Optical absorption, X-ray diffraction, Van der Pauw technique for measurement of a sheet resistance and Hall effect measurements at room temperature for determination of carrier density and conductivity have been used. The as-deposited films are of polycrystalline SnO2 with a tetragonal crystal structure and are preferentially having orientation along the (200) direction with texture coefficient as high as 6.16. The average grain size for the as-deposited sample is found to be of the order of 44 nm. The films have moderate optical transmission (up to 70–85% at 550 nm). The figure of merit (ϕ) values vary from 1.95 · 10 3 to 35.68 · 10 3 Ω 1. The films are heavily doped, degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) for the optimized sample is 5.1 Ω. The films have a resistivity of 5.43 · 10 4 Ω cm and mobility around 7.38 cm2 V 1 s 1.  相似文献   

18.
Mg–3Al–1Zn–2Ca (AZX312) alloy has been forged in the temperature range of 350–500 °C and at speeds in the range of 0.01–10 mm s−1 to produce a rib-web shape with a view to validate the processing map and study the microstructural development. The process was simulated through finite-element method to estimate the local and average strain rate ranges in the forging envelope. The processing map exhibited two domains in the following ranges: (1) 350–450 °C/0.0003–0.05 s−1 and (2) 450–500 °C/0.03–0.7 s−1 and these represent dynamic recrystallization (DRX) and intercrystalline cracking, respectively. The optimal workability condition according to the processing map is 425–450 °C/0.001–0.01 s−1. A wide flow instability regime occurred at higher strain rates diagonally across the map, which caused flow localization that should be avoided in forming this alloy. The experimental load–stroke curves correlated well with the simulated ones and the observed microstructural features in the forged components matched with the ones predicted by the processing map.  相似文献   

19.
《Materials Letters》2006,60(13-14):1697-1701
Nano-thin polypyrrole (PPy) films were deposited on vapor grown carbon fibers (VGCF) by using an in situ chemical polymerization of the monomer in the presence of FeCl3 oxidant. An ultrasonic cavitational stream was used during polymerization of pyrrole, to enable the deposition of uniformly nano-thin PPy films on the surface of VGCF. The PPy/VGCF composite was characterized by FTIR spectroscopy. Surface morphology of the polymer films was characterized by using scanning electron microscopy and scanning transmission electron microscopy. The capacitance of the composite electrodes was investigated with cyclic voltammetry. As results of this study, thinner layer of PPy in the composite electrode (< 10 nm) was effective to obtain fully reversible and very fast Faradaic reaction. Hence, most mass of the PPy could contribute to the pseudo-capacitive charge storage. This nano-thin PPy layer exhibited higher specific capacitance of ∼588 F g 1 at 30 mV s 1 and ∼545 F g 1 at 200 mV s 1 along with an excellent power capability.  相似文献   

20.
《Materials Letters》2007,61(11-12):2460-2463
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films with highly (002)-preferred orientation were deposited on glass substrates by DC reactive magnetron sputtering method in Ar + O2 ambience with different Ar/O2 ratios. The structural, electrical, and optical properties were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The resistivity and optical transmittance of the ZnO:Ga thin films are of the order of 10 4 Ω cm and over 85%, respectively. The lowest electrical resistivity of the film is found to be about 3.58 × 10 4 Ω cm. The influences of Ar/O2 gas ratios on the resistivity, Hall mobility, and carrier concentration were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号