首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红外减反射保护膜具有特定的厚度要求,如能进一步减小无氢类金刚石膜(DLC)的光学吸收,就能使其在较大厚度时不过分损失光通量而得以广泛应用.从这点来讲,无氢类金刚石膜是一种极具开发潜力的材料.本文采用非平衡磁控溅射技术(UBMS)制备了无氢类金刚石膜,并研究了其厚度均匀性.研究结果表明:该非平衡磁控溅射装置有能力获得大于φ150 mm的均匀性范围.对DLC膜红外透射谱的分析表明,分别在Si和Ge基底表面单面制备的DLC薄膜,其峰值透射率在波数2983/cm时分别为68.83%和63.05%,这一结果接近无吸收碳材料理论上所能达到的值.同时,在5000到800/cm范围内,未发现明显的吸收峰.这些优良的光学特性表明,采用非平衡磁控溅射技术制备的无氢DLC膜可以作为窗口的红外增透保护膜使用.  相似文献   

2.
非平衡磁控溅射无氢DLC增透膜的研制   总被引:5,自引:0,他引:5  
徐均琪  杭凌侠  惠迎雪 《真空》2005,42(5):22-25
非平衡磁控溅射(UBMS)技术近年来得到了广泛地应用.采用该技术制备的类金刚石薄膜(DLC)具有许多独特的性质.本文利用正交实验方法,对非平衡磁控溅射技术制备无氢DLC膜增透膜进行了研究,得到了影响薄膜光学性能的主要因素和最佳的制备工艺.结果表明,非平衡磁控溅射制备的无氢DLC膜具有较宽的光谱透明区,锗基底单面沉积DLC膜,其峰值透射率达到61.4%,接近理论值.  相似文献   

3.
为了降低类金刚石(DLC)薄膜的应力,使用脉冲真空电弧离子镀(PVAD)和电子束热蒸发相结合的复合沉积技术,在Si基底上制备了一系列不同锗含量(原子百分比)的Ge-DLC薄膜样片,研究了锗含量对DLC薄膜光学特性和力学特性的影响。研究结果表明:在1~5μm波段,当锗掺杂含量小于25%时,对DLC薄膜光学常数的影响不大;随着Ge含量的增加,DLC薄膜的折射率和消光系数都略微增大。随着DLC薄膜中Ge含量的增加,薄膜的内应力和硬度均有所降低。当DLC薄膜中Ge含量约为8%时,Ge-DLC薄膜的内应力从6.3降至3.0 GPa,而硬度仅从3875减小为3640 kgf/mm2,几乎保持不变。硅基底上单面沉积Ge的含量为8%的DLC薄膜在红外3~5μm波段的透过率峰值约为63.15%。  相似文献   

4.
Titanium/diamond-like carbon multilayer (TDML) films were deposited using a hybrid system combining radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition (PECVD) techniques under a varied number of Ti/diamond-like carbon (DLC) bilayers from 1 to 4, at high base pressure of 1 × 10(-3) Torr. The multilayer approach was used to create unique structures such as nanospheres and nanorods in TDML films, which is confirmed by scanning electron microscopy (SEM) analysis and explained by a hypothetical model. Surface composition was evaluated by X-ray photoelectron spectroscopy (XPS), whereas energy dispersive X-ray analysis (EDAX) and time-of-flight secondary ion mass spectrometer (ToF-SIMS) measurements were performed to investigate the bulk composition. X-ray diffraction (XRD) was used to evaluate the phase and crystallinity of the deposited TDML films. Residual stress in these films was found to be significantly low. These TDML films were found to have excellent nanomechanical properties with maximum hardness of 41.2 GPa. In addition, various nanomechanical parameters were calculated and correlated with each other. Owing to metallic interfacial layer of Ti in multilayer films, the optical properties, electrical properties, and photoluminescence were improved significantly. Due to versatile nanomechanical properties and biocompatibility of DLC and DLC based films, these TDML films may also find applications in biomedical science.  相似文献   

5.
The paper presents investigations of the optical properties of thin high-refractive-index silicon nitride (SiNx) and diamond-like carbon (DLC) films deposited by the radio-frequency plasma-enhanced chemical vapor deposition method for applications in tuning the functional properties of optical devices working in the infrared spectral range, e.g., optical sensors, filters or resonators. The deposition technique offers the ability to control the film's optical properties and thickness on the nanometer scale. We obtained thin, high-refractive-index films of both types at deposition temperatures below 350 °C, which is acceptable under the thermal budget of most optical devices. In the case of SiNx films, it was found that for short deposition processes (up to 5 min long) the refractive index of the film increases in parallel with its thickness (up to 50 nm), while for longer processes the refractive index becomes almost constant. For DLC films, the effect of refractive index increase was observed up to 220 nm in film thickness.  相似文献   

6.
Diamond-like carbon (DLC) films have proven quite advantageous in many tribological applications due to their low friction coefficient, their extreme hardness, and more recently their high adherence on different substrate materials. However, for many applications, DLC films as thick as 2 μm are required, which cause high residual stress. In order to overcome this problem, this study observed the behavior of different thicknesses of silicon interlayer between DLC films and Ti6Al4V substrates. The study also analyzed the relation of growth parameters to the mechanical properties of DLC films. Silicon and DLC films were grown by using a rf-PECVD at 13.56 MHz with silane and methane atmospheres, respectively. The contribution of an interlayer thickness to the adhesion between the DLC films and Ti6Al4V substrate was evaluated by using a micro-scratch technique. The hardness and friction coefficient were evaluated by using microindentation and lateral force microscopy (LFM), respectively. Raman scattering spectroscopy was used to characterize the film quality. A correlation was found between the intrinsic stress and adhesion of DLC film and the parameters of the silicon interlayer growth. The addition of a silicon interlayer successfully reduced intrinsic stress of the films, even as measured by using a perfilometry technique.  相似文献   

7.
The effect of precursor gases on the diamond-like carbon (DLC) film deposition was investigated by the direct ion beam deposition method. DLC films were deposited using methane and benzene as the precursor gases. Ion energies for the deposition range from 100 to 700 eV were achieved by adjusting the beam voltage. The residual stresses, refractive indices and optical band gaps were compared at the same ion energy. We observed significant differences in residual stress and optical properties between these films. As in r.f. plasma-assisted CVD, the residual stresses of the films deposited from benzene show a characteristic behaviour of lower ion energy deposition than those deposited from methane. The present observations are discussed in terms of the difference in ion energy per carbon atom at the growth surface. We also observed that the Ar addition effect on the residual stress is strongly dependent on the precursor gases.  相似文献   

8.
金刚石自支撑膜的高温红外透过性能   总被引:2,自引:0,他引:2  
由于金刚石具有低吸收和优异的力学与导热性能使其成为长波(8~12μm)红外光学窗口材料的重要选择。对于许多极端条件的应用,化学气相沉积(CVD)金刚石自支撑膜的高温光学性质至关重要。应用直流电弧等离子喷射法制备光学级金刚石自支撑膜进行变化温度的红外光学透过性能研究,采用光学显微镜、X射线衍射、激光拉曼和傅里叶变换红外-拉曼光谱仪检测CVD金刚石膜的表面形貌、结构特征和红外光学性能。结果表明:在27℃时金刚石膜长波红外8~12μm之间的平均透过率达到65.95%,在500℃时8~12μm处的平均透过率为52.5%。透过率下降可分为3个阶段。对应于透过率随温度的下降,金刚石膜的吸收系数随温度的升高而增加。金刚石自支撑膜表面状态的变化,对金刚石膜光学性能的影响显著大于内部结构的影响。  相似文献   

9.
Characterization of ion-beam-deposited diamond-like carbon films   总被引:3,自引:0,他引:3  
Diamond-like carbon (DLC) films are excellent prospects for a wide range of high-technology applications but their precise structure and properties are not well understood. The purpose of the present work was to use several complementary techniques to characterize the nature, structure and microstructure of DLC films. Thin DLC films were deposited on various substrates in the presence of a Si interlayer (500 Å thick) using CH4 ion-beam deposition at an acceleration energy of 750 eV and a current density of about 2.5 mA cm−2. The Si interlayer was deposited by either e-beam evaporation or Si evaporation enhanced by Ar+ beam bombardment (1 keV). The produced DLC films were featureless, very smooth and of high hardness (2900–3300 kg mm−2). Auger electron spectroscopy and electron diffraction showed that the films were mainly amorphous. Their microstracture was characterized by a three-dimensional network structure with a medium-range order of about 25 nm. Fourier transform infrared and Raman spectroscopies showed that the films were mainly composed of sp3 and sp2 carbon-bonded hydrogen. The sp3/sp2 ratio varied from 3.2 to 4.1 and was found to depend on the nature of the Si bond layer. The results showed that the nucleation of the diamondlike structure was promoted on the Si interlayer that was deposited under Ar+ beam bombardment. This effect can be explained by the higher surface roughness produced in this interlayer as suggested by the reflectivity measurements. Spectroscopic ellipsometry revealed that the films had an optical band gap between 1.56–1.64 eV. The present results are consistent with previous proposals suggesting that the DLC structure is composed of small graphitelike clusters (involving fused six-fold rings) that are interconnected by sp3-bonded carbon.  相似文献   

10.
Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13·56 MHz rf power. DLC films deposited at three different bias voltages (−60 V, −100 V and −150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at −100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2·16–2·26) as compared to films deposited at −60 V and −150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.  相似文献   

11.
非平衡磁控溅射类金刚石薄膜的特性   总被引:3,自引:1,他引:3  
非平衡磁控溅射(UBMS)结合了普通磁控溅射(MS)和离子束辅助沉积的优势,易于实现离子镀,近年来得到了广泛的应用.采用该技术制备的类金刚石薄膜(DLC)具有许多独特的性质.本文研究了非平衡磁控溅射技术制备DLC薄膜的光学、机械,电学和化学性能.研究表明,非平衡磁控溅射制备的DLC膜具有较宽的光谱透明区,且表面光滑、摩擦系数小、耐磨损、抗化学腐蚀,同时具有较高的电阻率和良好的稳定性.  相似文献   

12.
描述了利用射频等离子体溅射法采用不同阴极在衬底Si片上形成类金刚石薄膜的杂质含量及杂质对厚度和硬度的影响分析与结果,比较了DLC膜的力学性能在有无金属杂质情况下的异同,分析和计算了其硬度与硬度与制备参数间的关系,得出利用石墨作电极能制备出质量较好的DLC膜,初步探讨在Si衬底上沉积高硬度和强附着度类金刚石薄膜的有关工艺条件,并在理论上对这一结果进行了解释。  相似文献   

13.
随着高能量大功率激光器的发展和激光元件的广泛应用,用于红外窗口表面增透保护的类金刚石薄膜(DLC)的抗激光损伤特性成为评价薄膜质量优劣的一个重要指标。然而,不同的制备方法和技术沉积的DLC薄膜具有各异的微观结构,从而具有不同的抗激光损伤特性。本文采用脉冲真空电弧(PVAD)和非平衡磁控溅射(UBMS)技术沉积了DLC膜,对两种DLC膜抗激光损伤特性进行了研究,测试结果表明,两种技术沉积的DLC薄膜激光损伤阈值分别0.6 J/cm2和0.3 J/cm2,PVAD技术比UBMS技术沉积的DLC薄膜具有更高的抗激光损伤阈值。基于实验研究了薄膜光学常数和表面形态,分析了两种技术制备DLC膜激光损伤特性差异的主要原因。结果表明,采用UBMS技术沉积的DLC膜具有较小的折射率和较大的消光系数,薄膜表面存在较多的疵病和缺陷,这些是其激光损伤阈值较低的主要原因。  相似文献   

14.
Multilayer films of diamond-like carbon (DLC) and tungsten-containing diamond-like carbon (W-DLC) films were deposited onto silicon wafers using radio frequency chemical vapor deposition (RFCVD) and a magnetron sputtering method. The W-DLC layer was deposited on the silicon wafer with less than 60 W magnetron output. The DLC layer was then deposited on the W-DLC layer.Surface morphology was investigated by atomic force microscopy and the film structure by transmission electron microscopy. Friction tests for multilayered films were performed in a nitrogen atmosphere at room temperature using a ball-on-disk tribometer. A conventional stainless steel ball was used for the test.The surface profiles seen by atomic force microscopy showed that round-shaped clusters of around 100 nm were observed in just the single W-DLC layer. These clusters were considered to be tungsten or tungsten-carbon composites. In the case of the DLC/W-DLC multilayered structure, the top DLC layer covered the W-DLC single layer and smoothed the surface of the W-DLC film.Friction tests demonstrated that the friction coefficient of the W-DLC single layer was above 0.6 and increased gradually as the number of cycle increased. The W-DLC films partially broke down during our measurements. However the DLC/W-DLC multilayer films showed stable friction properties and were observed for up to 100,000 cycles. Their friction coefficient was typically less than 0.1 at 10 cm/s rotating speed. The DLC/W-DLC multilayer films exhibited stable low friction properties in a long term test under a nitrogen atmosphere.  相似文献   

15.
Silicon carbide (SiC) thin films were deposited using hot wire chemical vapor deposition (HWCVD) technique from pure silane and methane gas mixture. The effect of filament distance to the substrate on the structural and optical properties of the films was investigated. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman scattering spectroscopy and UV–Vis–NIR spectroscopy were carried out to characterize SiC films. XRD patterns of the films indicated that the film deposited under highest filament-to-substrate distance were amorphous in structure, while the decrease in distance led to formation and subsequent enhancement of crystallinity. The Si–C bond density in the film structure obtained from FTIR data, showed significant increment with transition from amorphous to nano-crystalline structure. However, it remained almost unchanged with further improvement in crystalline volume fraction. From Raman data it was observed that the presence of amorphous silicon phase and sp 2 bonded carbon clusters increased with the decrease in distance. This reflected in deterioration of structural order and narrowing the optical band gap of SiC films. It was found that filament-to-substrate distance is a key parameter in HWCVD system which influences on the reactions kinetics as well as structural and optical properties of the deposited films.  相似文献   

16.
Diamond-like carbon (DLC) films with different structures were deposited on Si (100) and stainless steel substrates in a hybrid deposition system with Ar and CH4 as the feedstocks. The effects of the bias voltage, Ti-interlayer, Ti functional gradient layer and Ti-doping on the internal stress in DLC films were investigated. The results show that the internal stress in DLC films arises from both the intrinsic stress generated during the film growth and the thermal stress generated due to the mismatching of the thermal expansion coefficient between the DLC films and the substrate materials. The intrinsic stress can be released through doping titanium element at the expense of reducing the sp3/sp2 ratio. The thermal stress in DLC films can be decreased through introducing Ti-interlayer or Ti functional gradient layer. Noticeably, DLC films with very low internal stress deposited on stainless steel can be obtained through the combination of Ti-doping and Ti functional gradient layer.  相似文献   

17.
The influence of plastic deformation of the substrate on the tribological properties of diamond like carbon (DLC) films was investigated in DLC films-steel substrate system. The tribological properties of DLC films deposited on different hardness steel were evaluated by a ball on disk rotating-type friction tester at room temperature under different environments. In dry nitrogen, DLC films on soft steel exhibited excellent tribological properties, especially obvious under high load (such as 20 N and 50 N). However, DLC films on hard steel were worn out quickly at load of 20 N. Plastic deformation was observed on soft steel after tribological tests. The width and depth of plastic deformation track increased with increase of the experimental load. Super low friction and no measurable wear were kept in good condition even large plastic deformation under high load conditions in DLC films-soft steel system. In open air, DLC films on soft steel exhibited high coefficient of friction and DLC films on ball were worn out quickly. Plastic deformation was not observed on soft steel because the contact area increased and the thick hardened layer on contact surface were formed by DLC films and debris particles together on the steel substrate. The wear track on steel became deep and wide with increase of loads and DLC films were worn out. The experimental results showed that super low friction and high wear resistance of DLC films on soft steel can be attributed to the good adhesion and plastic deformation. Plastic deformation played an active role in the tribological properties of DLC films on soft steel in the present work.  相似文献   

18.
The properties of porous films obtained by sintering a layer of polytetrafluoroethylene (PTFE) powder deposited onto a substrate were studied. The PTFE film porosity was controlled within 50–60% and the maximum pore size was 1–3 μm. The breaking stress of the films reached ~6 MPa at a 100% relative elongation. The influence of the particle size distribution function of the initial PTFE powder on the mechanical properties of sintered films is analyzed.  相似文献   

19.
Mixed composition thin films of zinc sulphide-thorium fluoride have been deposited on glass and silicon substrates by thermal evaporation of mixtures of these materials in different proportions, from a single resistively heated source. The films are characterized for their optical properties (refractive index and extinction coefficient), mechanical properties (intrinsic stress), surface morphology and chemical composition. It is found that these films have tailorable refractive indices and low losses, and that films with certain compositions have low intrinsic stress and smooth surface morphology, making them suitable for incorporation in thin film multilayers for use in the near infrared region up to at least 10μm.  相似文献   

20.
用自行设计的RF PCVD(射频辉光放电等离子体化学气相沉积 )设备沉积类金刚石膜 ,并对膜的力学、光学、化学性能进行了分析。表明用该设备制备的类金刚石膜具有显微硬度高、磨擦系数小、膜基结合力高、对红外有良好的增透性 ,并且耐磨耐蚀、化学稳定性好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号