首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两种离子液体的摩擦学行为研究   总被引:5,自引:1,他引:4  
合成了1-丁基-3-甲基咪唑四氟硼酸盐([Bm im]BF4)及1-羟乙基-3-甲基咪唑四氟硼酸盐([C2OHm im]BF4)2种室温离子液体。在四球摩擦机上研究了这2种离子液体的摩擦学性能,用SEM和XPS对磨痕表面的形貌和元素组成进行了表征,并分析了2种离子液体不同的润滑机制。结果表明,由于[C2OHm im]BF4上的功能化基团容易吸附在摩擦副表面,其在中低载荷下有更好的减摩抗磨性能。  相似文献   

2.
Tribological Performance of Room-Temperature Ionic Liquids as Lubricant   总被引:9,自引:0,他引:9  
Liu  Weimin  Ye  Chengfeng  Gong  Qingye  Wang  Haizhong  Wang  Peng 《Tribology Letters》2002,13(2):81-85
The tribological performance of room-temperature ionic liquid of alkylimidazolium tetrafluoroborate was evaluated using an Optimol SRV oscillating friction and wear tester in air and a CZM vacuum friction tester in vacuum (1×10-3 Pa) using a steel/steel (SAE52100) contact. From the results, the ionic liquid exhibits excellent friction-reduction, antiwear proprieties, both in air and vacuum, which are superior to phosphazene (X-1P) and perfluoropolyether (PFPE). During friction, the ionic liquid forms a surface protective film mainly composed of FeF2 and B2O3, which contributes to low friction and wear.  相似文献   

3.
This paper seeks to address the potential of using ionic liquids as nanolubricants on Polyether-ether-ketone (PEEK) surface. We characterize the tribological properties of two ionic liquids, namely1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate. The tribological data are compared with those of perfluoropolyether (PFPE) and Multiply Alkylated Cyclopentanes (MAC) data obtained from previous study. Ionic liquids at lower concentration of 0.4wt% (in solution prior to deposition) showed lower wear lives as compared to those for PFPE and MAC. However, at higher concentration of 4wt%, these ionic liquids have the same wear lives as those of PFPE and MAC, but show considerably lower coefficients of friction. Mechanisms of nanolubrication for ionic lubricants vis-a-vis those of PFPE and MAC are explained.  相似文献   

4.
The ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide was synthesized and evaluated as lubricant for the contact of steel/steel. The tribological properties of the ionic liquid as lubricant were investigated on an Optimol SRV oscillating friction and wear tester in ambient condition. The synthetic ionic liquid shows excellent tribological performance and is superior to the ionic liquid of alkylimidazolium tetrafluoroborate and the conventional high temperature lubricants X-1P and PFPE in terms of antiwear performance and load-carrying capacity. The elemental composition and chemical nature of the boundary film generated on the steel surface were analyzed on a scanning electron microscope with a Kevex energy dispersive X-ray analyzer attachment (SEM/EDS) and X-ray photoelectron spectrometer (XPS), and the XPS results indicate the occurrence of a complicated tribochemical reaction of ionic liquid with iron on the rubbing surface during the sliding process, with the formation of FeS, organic fluoride, inorganic fluoride, etc.  相似文献   

5.
Four imidazolium-based room temperature ionic liquids containing phosphonyl functional groups, i.e. 1-(3′-O,O-diethylphosphonyl-n-propyl)-3-alkylimidazolium tetrafluoroborates and hexafluorophosphates, were synthesized. The physical properties of the resulting synthetic products were evaluated, and their tribological behaviors as the lubricants for an aluminum-on-steel sliding system were evaluated on an oscillating friction and wear tester, with the emphasis being placed on the effect of the O,O-diethylphosphonyl groups in the ionic liquid molecules on the tribological behaviors. Thus the friction and tests were conducted at a frequency of 25 Hz, a sliding amplitude of 1 mm, and for a duration of 30 min. The worn aluminum surface was analyzed by means of scanning electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy. It was found that the synthesized ionic liquids had better friction-reducing and anti-wear ability for the aluminum-on-steel system than their nonfunctionalized courterparts (1-ethyl-3-hexylimidazolium tetrafluoroborate, coded as L206, and 1-propyl-3-octylimidazolium hexafluorophosphate, coded as LP308). Especially, they had much better load-carrying capacity than L206 and LP308. The tribological behaviors of the synthetic lubricants were dependent on both the anions and the side-substituted alkyl chains attached to the imidazolium cations. Moreover, physical adsorption and complicated tribochemical reactions were involved during the sliding process of the Al-on-steel system under the lubrication of the synthetic functionalized ionic liquids, which led to the generation of physically adsorbing and chemically reacting films composed of five-member-ring complex compounds, metal fluorides, nitrogen oxide, and FePO4 on the rubbed Al surface. Those physically adsorbing and chemically reacting films contributed to effectively decrease the friction and wear of the aluminum sliding against steel.  相似文献   

6.
Three kinds of ionic liquids (1‐butyl‐3‐methylimidazolium hexafluorophosphate (L‐P104), 1‐hexyl‐3‐methyl imidazolium hexafluorophosphate (L‐P106) and 1‐octyl‐3‐methylimidazolium tetrafluoroborate (LB108)) were added to the attapulgite base grease and the bentone base grease to investigate and compare the tribological behaviours of the ionic liquids with the two base greases at room temperature and 150°C. Tribological tests were performed using a ball‐on‐plate reciprocating tribometer. The attapulgite base grease showed better wear resistance properties than that of bentone base grease by adding ionic liquids as additives. At same time, the attapulgite base grease showed excellent friction‐reducing and wear resistance properties at high temperature (150°C). Also, we discussed the tribological mechanism of the attapulgite base grease at both room temperature and 150°C from the aspect of the structure of the grease thicker. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The tribological performance of halogen-free ionic liquids at steel–steel and diamond-like carbon (DLC)–DLC contacts was investigated. Hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (ta-C) were used as test specimens. Friction tests were carried out on steel–steel, a-C:H–a-C:H, and ta-C–ta-C contacts by using a reciprocating cylinder-on-disk tribotester lubricated with two different types of halogen-free ionic liquids: 1-ethyl-3-methylimidazolium dicyanamide ([BMIM][DCN]) and 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCC]). From the results of friction tests, the ta-C–ta-C tribopair lubricated with [BMIM][DCN] or [BMIM][TCC] exhibited an ultralow friction coefficient of 0.018–0.03. On the other hand, ultralow friction was not observed at the steel–steel and a-C:H–a-C:H contacts. Measurements obtained with a laser scanning microscope and an atomic force microscope (AFM) showed that a chemical reaction film, derived from the ionic liquid lubricant used, was formed on the steel surfaces. However, this chemical reaction film was not observed on either of the DLC surfaces. The AFM results showed that there were high-viscosity products on the ta-C surfaces, that the wear tracks on the ta-C surfaces exhibited low frictional properties, and that the ta-C surfaces were extremely smooth after the friction tests. Based on these results, it was concluded that an ionic liquid–derived adsorbed film formed on the ta-C surface and resulted in the ultralow friction when lubricated with a halogen-free ionic liquid.  相似文献   

8.
采用毛细管区带电泳法,以咪唑类离子液体l-正乙基-3-甲基咪唑四氟硼酸盐[bmim]BF4)为手性分离添加剂,β-环糊精为手性选择剂,NaH2PO4为背景电解质,分离电压10kV,实现了二氧异丙嗪对映体的分离。考查了[bmim]BF4浓度、β-环糊精浓度、NaH2PO4浓度和分离电压对二氧异丙嗪对映体分离度的影响。当缓冲液中不含[bmim]BF4时,二氧异丙嗪对映体的分离度仅为0.28,当缓冲液中含[mim]BF4时,随着[bmim]BF4浓度的增大,二氧异丙嗪对映体的分离度增大,可达1.2。实验表明[bmim]BF4能够增强β-环糊精的手性拆分能力,对手性拆分有协同作用。  相似文献   

9.
Ionic liquids of α, -diimidazoliumalkylene hexafluorophosphate were synthesized. The tribological properties of the synthetic ionic liquid and the ionic liquid contained additive for contacts of steel/steel were investigated by Optimol SRV oscillating friction and wear tester under ambient conditions. The synthetic ionic liquid presented low friction coefficients and small wear volumes, especially under higher temperatures. The ionic liquid doped with benzotriazole (BTA) showed excellent anti-wear ability. The worn surfaces and chemical nature of the boundary films generated on the metal surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). SEM results showed slight abrasion on the worn surfaces and XPS results indicated the formation of FeF2, FeF3, Fe3O4, and FePO4 by the tribochemical reactions of ionic liquid with iron during the sliding process.  相似文献   

10.
We present an investigation of effect of alkyl chain length and hydroxyl group functionalisation on the tribological properties of imidazolium tetrafluoroborate ionic liquids. Four kinds of hydroxyl‐functionalised ionic liquids with the alkyl chain of C1–C10 were synthesised, and the relationships between their structure and physicochemical properties such as viscosity, thermal stability and corrosion, before and after incorporation of a hydroxyl group, were measured. In particular, the studies on their lubrication properties as ionic liquid (IL) lubricants for steel–steel contacts, including the friction coefficient, the wear volume and so on, were particularly emphasised. Moreover, an in‐depth exploration about the function mechanism and failure mode of the ILs during the friction process were studied using the scanning electron microscope and X‐ray photoelectron spectroscope technologies, and a proposed interaction model between ILs and steel substrate was presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper studies ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate ionic liquid [(NEMM)MOE][FAP] as 1 wt% additive to a polyalphaolefin (PAO 6) in the lubrication of CrN PVD coating. The tribological behavior of this mixture has also been compared with a traditional oil additive, such as zinc dialkyldithiophosphate (ZDDP). Friction and wear tests were performed by means of a ball-on-plate reciprocating tribometer, and XPS was used to analyze wear surfaces. The experimental results showed that both additives substantially improve the anti-friction and anti-wear performance of the base oil. However, the tribological behavior of the ionic liquid as oil additive does not reach that of ZDDP. The interactions of each additive with the surface and tribofilm formation contributed to improve the tribological behavior of the lubricants.  相似文献   

12.
The films of three kinds of 3-butyl-1-methylimidazolium base ionic liquids with thickness of 2 nm were prepared on hydroxyl-terminated and amino-terminated Si substrates by dip-coating method. As anions, tetrafluoroborate, hexafluorophosphate, and adipate, respectively, were chosen. The tribological performances of these thin films were examined by the determination of the film durability and friction coefficient by means of a UMT-2MT tribometer using a steel ball as counterpart. The morphologies of worn surfaces were investigated by a non-contact interferometric microscope. The findings showed that 3-butyl-1-methyl-imidazolium hexafluorophosphate having the poorest hydrophilicity of the ionic liquids exhibited the best tribological properties on aminated Si surface at 0.4 N and 4 Hz.  相似文献   

13.
Fangkun Zhu  Wenxiu Fan  Airong Wang  Yong Zhu 《Wear》2009,266(1-2):233-238
Two non-phosphorus and ashless 1,3,4-thiadiazole-2-thione derivatives, 5-dodecyldithio-3-phenly-1,3,4-thiadiazole-2-thione (DPTT) and 5-cetyldithio-3-phenyl-1,3,4-thiadiazole-2-thione (DHTT), were synthesized and their tribological behaviors as additives in rapeseed oil (RSO) were evaluated using a four-ball friction and wear tester. Their thermal stabilities and anticorrosive properties were investigated. The results indicate that the additives possess good thermal stabilities, corrosion inhibiting abilities and excellent load-carrying capacities. Moreover, they both have good anti-wear and friction-reducing property at relatively low concentration and under all test loads. The worn surfaces of the steel balls were observed using a scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is supposed that the synthetic additives adsorb and react with the steel surfaces during the rubbing process and generate a surface protective film composed of sulfate, sulfide, iron oxide and organic nitrogen-containing compounds, which accounts for the better tribological behaviors of the base stock containing the synthetic additives as compared with the base stock alone.  相似文献   

14.
This study compares the tribological behavior of two ionic liquids ([BMP][FAP] and [(NEMM)MOE][FAP]) used as oil additive for the lubrication of a steel–steel contact. Friction and wear experiments were performed using a HFRR test machine. Friction coefficient and electrical contact resistance were measured during the tests, and the wear surface was analyzed by confocal microscopy and XPS. The tribological results showed that both ionic liquids used as additive decrease friction and wear but the [BMP][FAP] had a better performance than the [(NEMM)MOE][FAP] due to its higher reactivity with the steel.  相似文献   

15.
Multi-walled carbon nanotubes (MWCNTs) were modified by imidazolium-based ionic liquid (IL), 1-hydroxyethyl-3-hexyl imidazolium tetrafluoroborate and used as an additive in base stock IL 1-methyl-3-butylimidazolium tetrafluoroborate as the base lubricant. The effectiveness of using the IL- modified MWCNTs as lubricant additive was evaluated using a ball-on-plate configuration on an Optimol SRV oscillating friction and wear tester. The worn surfaces were examined using scanning electron microscope and the chemical composition on wear tracks was analyzed on an X-ray photoelectron spectrometer. Results suggest excellent anti-wear properties for the IL-modified MWCNTs as lubricant additive.  相似文献   

16.
Three kinds of phosphonate ionic liquids (PILs), 1-butyl-3-methylimidazolium O-butyl phosphonate (BMIM-BP), 1-butylpyridinium O-butyl phosphonate (BPy-BP) and N, N-dibutylammonium O-butyl phosphonate (TBA-BP) were synthesized and evaluated as lubricants for steel/aluminum contact. Results show PILs perform much better lubricating properties than conventional ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and liquid paraffin, although the wear volume of BMIM-BP is larger than that of liquid paraffin. The results of corrosion tests of the PILs demonstrate that the lubricating properties of PILs are relevant with their electrochemical properties. Moreover, the tribological mechanism was discussed by surface characterizations and contrastive experiment. It is concluded that the tribological performances of the PILs are related to the formation of the ordered adsorption films, tribochemical reactions and their corrosion properties.  相似文献   

17.
Two kinds of room temperature ionic liquid (RTIL) films carrying vinyl and hydroxyl functional groups were prepared on single-crystal Si wafers by spin coating. The tribological properties of the RTIL films sliding against AISI-52100 steel ball and Si3N4 ball in a ball-on-plate configuration were investigated on a dynamic–static friction coefficient measurement apparatus, using perfluoropolyether (PFPE) film as a comparison. The tribological behaviors of the ionic liquid films sliding against the same counterparts at extended test durations were also evaluated using a universal UMT-2MT test rig. The morphologies of the wear tracks of the RTIL films and the counterparts were examined using a scanning electron microscope equipped with an energy-dispersive X-ray analyzer attachment. It was found that the tribological performances of the ionic liquid films were closely related to the chemical structures of the RTILs and the chemical characteristics of the substrate surfaces. The films of vinyl group functionalized ionic liquids on hydroxylated substrate and vinyl group modified substrate exhibited very good friction-reduction and wear-resistant properties. It was assumed that there were enough strong forces between the films and substrate in these cases, and the ionic liquid molecules maintained good flexibility simultaneously. The films on hydrogen-terminated and methyl-terminated substrate showed poor tribological performance, which could be related to the relatively weak forces between the films and substrates. Moreover, the films on hydroxylated substrate showed lower friction at higher sliding velocities, which was assumed to be governed by the more rapid adsorption of the ionic liquid molecules on the steel ball at a higher sliding velocity. In addition, the ionic liquid films also had excellent tribological properties as they slid against silicon nitride ball. Therefore, it was supposed that the ionic liquid films could be used as a kind of universal lubricant for various combinations of the frictional pair.  相似文献   

18.
For developing antiwear additives with high efficiency but with low sulfated ash, phosphorous, and sulfur (SAPS), N-substituted quinolinium halides, [DIP-Q]+Br? [DIP-Q=1-(3-(1,3-dioxoisoindolin-2-yl)propyl)quinolon-1-ium], [DIE-Q]+Br? [DIE-Q=1-(3-(1,3-dioxoisoindolin-2-yl)ethyl)quinolon-1-ium], [P-Q]+I? [P-Q=propylquinolon-1-ium], and [M-Q]+I? [M-Q=methylquinolon-1-ium] have been prepared and characterized by 1H- and 13C-NMR spectroscopic techniques. The tribological performance of these quinolone-based quaternary salts as antiwear additives in paraffin oil has been assessed on a four-ball test rig. The observed results have been compared with those of zinc dialkyldithiophosphate (ZDDP), a high SAPS additive. The tribotesting of these additives has been performed using 1% w/v additives concentration at different loads and times. The potential of these compounds as antiwear additives is evident from their observed tribological data: mean wear scar diameter (MWD), friction coefficient (µ), mean wear volume (MWV), and wear rates. All of the quinolinium derivatives prove to be better antiwear additives than ZDDP. Among the tested synthesized compounds, [DIP-Q]+Br? exhibits the best tribological behavior followed by [DIE-Q]+Br?, [P-Q]+I?, and [M-Q]+I?. The surface topography of worn surface studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that surface roughness is reduced to a greater extent in case of quinolinium derivatives than lubrication with ZDDP or base oil alone. Energy-dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analysis of worn surfaces in the presence of quinolinium additives shows that the tribofilm is composed of FeBr3, Fe3O4, and organic compounds containing carbonyl and imine bonds. Theoretical investigations using quantum chemical calculations are indicative of significant chemical interactions of these quinolinium additives with metal surfaces, which is strongly supported by the observed experimental data.  相似文献   

19.
This article reports several conductive greases prepared by ionic liquids (ILs) that are synthesized by mixing lithium tetrafluoroborate (LiBF4) or lithium bis(trifluoromethane-sulfonyl) imide (LiNTf2) in diglyme (G2) and tetraglyme (G4) with appropriate weight ratios at room temperature (RT). The ILs have good solution in poly(ethylene glycol-ran-propylene glycol) monobutyl ether (PAG) and thus can be used as a base oil for preparing grease for steel–steel contacts. The electrical conductive properties of the grease prepared with the mixed oil of PAG plus ILs were evaluated using the DDSJ-308A conductivity tester, GEST-121 volume surface resistance tester, and HLY-200A circuit resistance tester. Combining the free volume with viscosity, the conductivity is inversely proportional to viscosity. The tribological properties were investigated using an MFT-R4000 reciprocating friction and wear tester. The results demonstrated that the prepared greases possess better conductive and tribological properties than the commercial grease with Cu powder as an additive.  相似文献   

20.
Ionic liquids are expected to function as novel lubricants owing to their attractive characteristics such as high thermal stability and low vapor pressure. In order for ionic liquids to be used as lubricants, knowledge of their corrosion and lubricating properties must be obtained. However, the reaction mechanism and decomposition of ionic liquids have not yet been sufficiently clarified. In this study, we elucidate the tribological properties and tribochemical reaction mechanism by analyzing outgassing generated by the decomposition or reaction of ionic liquids [EMIM][DCN], [EMIM][TCB], and [BMPL][TCB] on a sliding surface. From our results, [BMPL][TCB] showed the lowest friction coefficient and [EMIM][DCN] had a lower friction coefficient than [EMIM][TCB]. In all cases, outgassing from the ionic liquid was confirmed, and main outgassing products were derived from the cation. [BMPL][TCB] had the largest amount of outgassing. Time-of-flight secondary ion mass spectroscopy analysis showed that tribochemical reactions involving the anion occurred. From sliding tests and experimental analyses, it is revealed that the [DCN] anion showed superior lubricating properties to the [TCB] anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号