首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim  Seock-Sam  Chae  Young-Hun  Kim  Dae-Jung 《Tribology Letters》2001,9(3-4):227-232
A sliding friction-and-wear test for silicon nitride (Si3N4) was conducted using a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests were carried out from room temperature to 1000°C using self-mated silicon nitride couples in laboratory air. The worn surfaces were observed by SEM and the debris particles from the worn surfaces were analyzed for oxidation by XPS. The normal load was found to have a more significant influence on the friction coefficient of the silicon nitride than an elevated temperature. The specific wear rate was found to decrease along with the sliding distance. The specific wear rate at 29.4 N and 1000°C was 292 times larger than that at room temperature. The main wear mechanism from room temperature to 750°C was caused by brittle fracture, whereas from 750 to 1000°C the wear mechanism was mainly influenced by the oxidation of silicon nitride due to the increased temperature. The oxidation of silicon nitride at a high temperature was a significant factor in the wear increase.  相似文献   

2.
Cutler  J.N.  Sanders  J.H.  Fultz  G.W.  Eapen  K.C. 《Tribology Letters》1998,5(4):293-296
Fultz et al. have reported that the thermo‐oxidative properties of linear PFPAEs can be improved by stressing the fluid at elevated temperature (371°C) in the presence of air. A study of M‐50 steel coupons exposed to unstressed and stressed linear PFPAE fluids at 260 °C and 330 °C each reveal complex surface layers. For the coupon exposed to the unstressed fluid at 260 °C, a subsurface layer is observed between the iron oxide and iron substrate that has been characterized as being composed of FeF2. In contrast, the coupon exposed to the stressed fluid has a marked increase in the iron oxide thickness ∼2–3 times) when compared to the unstressed sample and shows no evidence of a buried fluorine‐containing layer. An increase in temperature (330 °C) in the stressed fluid O–C test was required to form a subsurface FeF2 layer. It is proposed that the elimination of the fluorine layer found on the M‐50 substrate increases the upper temperature limit found from the oxidation–corrosion studies. The increase in the oxide layer thickness implies that the FeF2 layer found in the unstressed sample acts like a diffusion barrier which inhibits the outward movement of Fe0 and the decreased rate of iron oxide growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Cobalt-based alloys are often used for bearing applications, especially at elevated temperatures. One of the newly developed 700 series cobalt-based alloys, Stellite 712, has been demonstrated to possess high resistance to wear and corrosion in aggressive environments. Continuous efforts have been made to further improve this alloy for enhanced resistance to high-temperature wear involving oxidation. Recent studies showed that the improvement of the oxide scale on Co-base alloys by alloying with yttrium was an effective way to diminish wear of the alloys at elevated temperatures.In this work, sliding wear performances of yttrium-free and yttrium-containing Stellite 712 samples at elevated temperatures were evaluated. The mechanism responsible for changes in its wear performance was investigated by studying the effects of alloying yttrium on microstructure and mechanical properties of the bulk alloy and its oxide scale, employing various experimental methods including micro- and nano-mechanical probing, XRD, SEM-EDS, AFM and high-temperature pin-on-disc wear testing. The research demonstrated that alloying a small amount of yttrium (e.g. less than 1%Y) rendered the oxide scale on Stellite 712 stronger with higher adherence to the substrate, which was largely beneficial to the wear performance of the alloy at elevated temperatures. Mechanisms involved are discussed in this article.  相似文献   

4.
Small iron spheres were made to impinge normally on iron plates at several different temperatures in gases with various oxygen activities. The spheres welded permanently to the plate when the impact occurred under purified hydrogen and at low impact velocities but rebounded at impact velocities larger than a characteristic value which increased with an increase in either the temperature or the surface cleanliness of the sphere and plate. Permanent adhesion can be prevented, even at low impact velocities, by coating the iron with very thin films of wüstite or with thinner films of Al2O3. The linear increase in impact area with impact velocity can be understood from the theory of the hardness indenter, using the appropriate high strain rate flow stress. It is inferred that a bond always forms between colliding bodies but that permanent adhesion occurs only when the elastic energy stored during impact is less than the energy required to break the bond by crack propagation. The stored elastic energy increases with impingement velocity by more than does the energy required for the propagation of a crack to separate the bodies completely. Consequently, there exists a critical velocity beyond which permanent adhesion does not occur.  相似文献   

5.
D.J. Barnes  F.H. Stott  G.C. Wood 《Wear》1977,45(2):199-209
Friction experiments have been carried out in an ultrahigh vacuum system at 20–850 °C to investigate the tribological properties during like on like sliding of iron and iron-chromium alloys containing up to 40% Cr. Most of the tests were performed in a background pressure of 10?8 Pa, although others were carried out in 10?4 and 10?5 Pa oxygen. High temperature microhardness tests were also made on the materials. The results indicate that hardness and coefficient of friction values are not closely related, but that the coefficient of friction may be correlated with the ductility of the metal. The only alloy not to exhibit seizure during sliding in 10?8 Pa at high temperature was Fe-40% Cr.  相似文献   

6.
T. Polcar  N.M.G. Parreira  A. Cavaleiro   《Wear》2008,265(3-4):319-326
Transition metal nitrides exhibit excellent mechanical properties (hardness and Young's modulus), high melting point, good chemical stability and high electrical conductivity. However, tungsten nitrides still stand aside of the main attention. In our previous study, tungsten nitride coatings with different nitrogen content showed excellent wear resistance at room temperature. Nevertheless, many engineering applications require good tribological properties at elevated temperature. Thus, the present study is focused on the tribological behaviour (friction coefficient and wear rate) of tungsten nitride coatings at temperature up to 600 °C.

The structure, hardness, friction and wear of tungsten nitride coatings with nitrogen content in the range 30–58 at.% prepared by dc reactive magnetron sputtering were investigated. The tribological tests were performed on a pin-on-disc tribometer in terrestrial atmosphere with Al2O3 balls as sliding partner. The coating wear rate was negligible up to 200 °C exhibiting a decreasing tendency; however, the wear dramatically increased at higher temperatures. The coating peeled off after the test at 600 °C, which is connected with the oxidation of the coating.  相似文献   


7.
The effect of the sliding speed on friction and wear characteristics of plasma-sprayed ceramic coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3, Al2O3-modified) was studied. Plasma-sprayed coatings are not hard and have high layered structure. Abrasion of coatings in the friction pair with steel and bronze counter-bodies occurs through brittle detachment conglomerated regions with low cohesive resistance. The modified coating (Al2O3) has the highest wear resistance and the lower coefficient of friction compared to the coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3) in the studied velocity range (0.1–10 mm/s). Laser melting can be used as an efficient way of increasing the tribotechnical properties of plasma-sprayed oxide coatings.  相似文献   

8.
Temperature measurement is essential for several forming processes at elevated temperatures. It serves to determine and control the workpiece temperature. Thermography as a non-contact-based technology offers the possibility to capture thermograms of complete workpieces without any time-offset. However, the application of thermography requires the knowledge of the fundamentals of radiation thermometry, in particular the emissivity. This paper presents the results of the application of thermography in incremental sheet forming (ISF) with Joule heating and radial–axial ring rolling as a bulk forming process. Using thermography for the determination of the temperature of the forming zone allows for a real-time closed loop control in ISF with Joule heating. Additionally, the results of the temperature measurement of the surface temperature of radial–axial rolled rings are presented, which can be used as a starting point to make a forecast of the rings’ dimensions in cold state.  相似文献   

9.
The stability of austenitic FeCrNi alloys to martensitic transformation is essential for the operation of cryogenic components in motion. High strength, sufficient ductility and the absence of ferromagnetism are desired properties. Results of ball‐on‐disc sliding tests are presented. Examples are given for testing at room temperature and conclusions are made for low temperatures equivalent to the boiling points of nitrogen, hydrogen and helium. Changes in the alloy microstructure are shown by light microscopy, scanning electron microscopy, magnetic induction, and X‐ray diffraction methods. The influence of liquid hydrogen on structure transformation is taken into special consideration, since it decreases the stacking fault energy of the materials, and favours martensitic transformation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In the present study, incremental forming of Mg alloy sheet at elevated temperatures was attempted with local heating apparatus. The device is composed of several halogen lamps and designed to move with forming tool for local heating in deformation zone. In order to investigate the influences of process parameters to incremental formability of AZ31 alloy sheet, a series of incremental forming tests of AZ31 for cone and pyramid type of simple models were carried out under various process conditions. Experiments were performed under various temperatures, feeding depth per cycle and inclination angles and the results were analysed.  相似文献   

11.
J.L. Mo 《Tribology International》2008,41(12):1161-1168
The sliding tribological behavior of the PVD AlCrN coating against Si3N4 ball have been investigated by using the CETR multi-functional UMT-2 test system under two sliding conditions (bidirectional and unidirectional). Reciprocating sliding tests (bidirectional) were performed under varied normal loads (5, 10 and 20 N) at sliding velocity of 0.48 m/min. Ball-on-disc tests (unidirectional) were performed at varied sliding velocities (0.48 and 5 m/min) under normal load of 5 N. The wear scars of the coating were evaluated by surface profilometer, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the sliding wear mechanism of the coating was consequently discussed. The results showed that AlCrN coating had excellent anti-abrasion properties. Both the normal load in reciprocating sliding test and the sliding velocity in ball-on-disc test had significant influence on the sliding tribological behavior of the AlCrN coating. The combination of abrasion and oxidation was the main sliding wear mechanism for the AlCrN coating. The wear resistant and thermally stable oxides formed by the tribo-chemical reactions of chromium and aluminum protected the AlCrN coating against wear admirably.  相似文献   

12.
Diamond-like-carbon (DLC) coating of thickness 3 and 10 μm were developed with and without radical nitriding pretreatment on steel rollers and spur gear pair. The friction coefficient and wear amount were evaluated under sliding rolling contact condition in vacuum and under oil lubrication. Delamination of coatings was observed at the interface of the substrate. The wear resistance of coatings improved with the thickness of the coating. In vacuum both the roller and the gear pair of 10 μm coating thickness with radical nitriding showed identical wear behavior. The radical nitriding seemed to enhance the life of DLC coatings.  相似文献   

13.
Y. A-H. Mashal  M. H. El-Axir  M. A. Kassem 《Wear》2001,250(1-12):518-528
In this investigation the tribological characteristics of rapidly solidified Al–8Fe–4Ce with improved elevated temperature properties were studied. Such characteristics were compared with cast aluminum–silicon alloy and cast zinc–aluminum alloy. These materials included Al–13Si, Zn–35Al, Zn–35Al–Si, Zn–35Al–3.75Si and Zn–35Al–5.8Si. The wear rates of all materials were tested on a crossed-cylinders wear machine against 440C stainless steel counterface lapped by random abrasion using diamond paste to the desired average surface roughness. The effects of sliding distance on both the worn volume and the coefficient of friction were examined. The aluminum–iron–cerium alloy (Al–8Fe–4Ce) showed the lowest wear rate. The experiments were then extended on this material to examine the effect of varying the applied load and sliding speed on its wear rate. It was found that increasing the applied load increased the wear rate while it was slightly sensitive to the change in sliding speed. As the wear results showed that the Al–8Fe–4Ce alloy has the lowest wear rates, its machinability during turning operation was studied. Statistically-based experimental design (response surface methodology) using central composite second-order rotatable design technique was used to improve the experimentation design without loss of accuracy of the results. The interaction of cutting parameters (cutting speed, feed rate and depth of cut) was examined and their effect on the average surface roughness was reported. It was found that employing a combination of high cutting speed and small depth of cut with small feed rate causes a significant reduction in Ra. The data were represented in three-dimensional and contour graphs for selecting the appropriate machining conditions required to achieve desired values of surface roughness.  相似文献   

14.
The use of injection moulded thermoplastic composites is increasing, but without fillers, reinforcements, or lubricants, they are limited by their thermal behaviour. This study looks at four polymers — polyamide 46, polyphthalamide, polyetherimide, and polyphenylenesulphide — containing first glass fibres as reinforcement, and a second version with added PTFE. Two types of wear test were undertaken, sliding wear (pin-on-disc and block-on-ring), and reciprocally fretting wear. The test materials showed different wear rates both under different tests and at various temperatures.  相似文献   

15.
The images of human erythrocytes and vesicles were analyzed by a light microscopy system with spatial resolution of better than 90 nm. The samples were observed in an aqueous environment and required no freezing, dehydration, staining, shadowing, marking, or any other manipulation. Temperature elevation resulted in significant concentration increase of structurally transformed erythrocytes (echinocytes) and vesicles in the blood. The process of vesicle separation from spiculated erythrocytes was video recorded in real time. At a temperature of 37°C, mean vesicle concentrations and diameters were found to be 1.50 ± 0.35 × 106 vesicles per microliter and 0.365 ± 0.065 μm, respectively. The vesicle concentration increased approximately threefold as the temperature increased from 37 to 40°C. It was estimated that 80% of all vesicles found in the blood are smaller than 0.4 μm. Accurate account of vesicle numbers and dimensions suggest that 86% of the lost erythrocyte material is lost not by vesiculation but by another, as yet, unknown mechanism. Microsc. Res. Tech. 76:1163–1170, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The antioxidant efficacy of various oxidation inhibitors in low erucic acid rapeseed oil has been studied in a screening test at 130°C by an induction period method. Hindered monophenols, sulphides, phosphites, aromatic amines and zinc dithiophosphates yielded no or only marginal stabilising effects. Remarkably increased oxidation stabilities were observed with certain hindered bisphenols, polyhydroxybenzenes, zinc and bismuth dithiocarbamates. In high oleic sunflower oil with a lesser portion of multiple unsaturation, these additives induced relatively longer induction periods. Mixtures of zinc dithiocarbamates and 4,4′-methylenebis-(2, 6-di-tert-butylphenol) or octylated di-phenylamine, as well as compositions of all three compounds, exhibited synergistic effects. Under the conditions employed these additives were distinctly superior to commercially recommended formulations. A mechanistic concept of the antioxidant action of zinc dithiocarbamate is briefly discussed.  相似文献   

17.
Measurements are presented of friction and wear during sliding of specimens of Ni-Cr alloys containing 0% to 40% Cr on like specimens in air at 20°, 400° and 800 °C. The worn specimens have been examined by optical and scanning electron microscopy, electron probe microanalysis and electron diffraction and microhardness measurements have been made.Under the sliding conditions used, all the alloys show a transition temperature above which a low coefficient of friction and usually relatively low wear are observed after a time and below which these parameters remain relatively high throughout. Above the transition temperatures, the frictiontime loci show sharp reproducible changes from relatively high to low coefficients of friction. Such changes can be associated with the formation of a thermally softened oxide layer (termed a glaze) on the bearing areas during sliding. Once the glaze is formed, very little further wear occurs for the high chromium-content alloys, although further damage does take place with the weaker low chromium-content alloys, especially at temperatures just above the transition temperature. These tribological properties of the glaze are associated with its low shear strength and the strength of the underlying alloy substrate.During sliding at temperatures below the transition temperatures, metal-to-metal contact takes place, although oxide is formed on the bearing area of the low chromium-content alloys even at 20 °C. The friction and wear behaviour is largely determined by the strength and work-hardenability of the alloy.Correlations between the tribological behaviour of these binary Ni-Cr alloys and commercial Nimonic alloys indicate that the trace elements in the latter play only a relatively minor role in determining this behaviour. It is concluded that high strengths and relatively rapid transient oxidation rates of the alloys, and appropriate physical properties of the resulting oxide films, are important qualities of the alloys under the conditions used.  相似文献   

18.
Sliding wear at elevated temperature is an important material removal mechanism in large number of engineering applications such as metal forming operation, gas turbine engines, etc. The material loss during sliding at elevated temperature is governed by the antagonistic effect of wear process and oxidation. The objective of the present work is to give an outline of the current status and future trends of wear at elevated temperature of selected metallic materials. Starting with a brief overview of present level of understanding of the elevated temperature wear of various metals and alloys, the initial parts of the paper describes various important development in recent years on elevated temperature sliding wear. The salient features which have helped us to gain in depth scientific knowledge of elevated temperature wear are discussed in the light of recent developments. The overview is further substantiated by detailed study and observation in recent times in particular, the work done at the Vienna University of Technology (Institute of Microtechnique and Precision Engineering) and at the Austrian Center of Competence for Tribology. Specific examples from the recent literatures are described to exemplify the mechanisms of formation of various types of layers during high-temperature wear. Some thoughts on the future directions for research are also outlined.  相似文献   

19.
Dry sliding wear behaviour of Al–Si A413 alloy with and without intermetallics has been studied at ambient and elevated temperatures. It is observed that as the temperature is increased, the wear rate decreased. The reduction in wear rate is mainly attributed to the formation of glazing layers at elevated temperature and is observed in both A413 alloy with and without intermetallics. The wear due to oxidation is predominant during high temperature sliding.  相似文献   

20.
R.B. King 《Wear》1979,56(1):37-53
Dry bearings have been used increasingly over the last few years to replace conventional grease-lubricated metallic bearings in aerospace applications, particularly where maintenance is difficult or in hostile environments where fluid lubrication is impossible.The friction and wear properties of a wide range of experimental and commercial dry bearing liners have been examined in conditions of reciprocating line contact on a modified pin-on-ring apparatus at temperatures up to 150 °C. The development of the apparatus is briefly described. Accelerated wear data are provided in a few hours as opposed to the several months required for full-scale bearing test rigs. The specific wear rates differed appreciably under ambient conditions, varying by approximately two orders of magnitude. The application of additional heat generally increased the wear rate although some materials had an optimum performance at temperatures above ambient. In general liners containing synthetic reinforcing fibres, e.g. polyamide or polyester, appear to exhibit superior wear properties to those containing glass fibres. Comparisons are drawn between the data obtained from these accelerated tests and the results of those obtained on journal bearings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号