首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic γ-Fe2O3 nanoparticles were successfully deposited on the surface of the bamboo via a coprecipitation process at room temperature. Spherical-like magnetic γ-Fe2O3 nanoparticles with a diameter of about 17 nm displayed well superparamagnetic behavior and were chemically bonded to the bamboo surface through the combination of hydrogen groups. With further modification by 1H,1H,2H,2H-perfluorodecyltri ethoxysilane (FAS-17), magnetic γ-Fe2O3/bamboo composites (MBCs) expressed superhydrophobic performances to not only water but also common liquids like coffee, milk, ink, tea, and coke. When immersed into the corrosive solutions including strong acid (pH = 1), heavy alkaline (pH = 14), and salt with high concentration (5 M) for 24 h, superhydrophobic magnetic γ-Fe2O3/bamboo composites (SMBC) still remained magnetism as well as superhydrophobicity. Also, under harsh conditions like boiled at 100 °C for 4 h, frozen at − 40 °C for 24 h, SMBCs were kept a robust magnetism and superhydrophobicity. Additionally, SMBC was a typical ferromagnet and exhibited some microwave absorbabilities.  相似文献   

2.
Well-dispersed α-Fe2O3 parallelepiped nanocrystals have been successfully prepared via a hydrothermal synthetic route. The shapes and structures of the products were characterized by using powder X-ray diffraction and scanning electron microscopy. The results showed that the α-Fe2O3 samples have a parallelepiped shape with an average parallel side of 80–90 nm and thickness of 60–70 nm. The parallelepiped nanocrystals exhibited a ferromagnetic behavior with the coercive force, saturation magnetization, and remanent magnetization of 920 Oe, 0.44 emu/g, and 0.17 emu/g, respectively. The crystal growth process was discussed on the basis of time-dependent experimental results.  相似文献   

3.
The present paper reports the synthesis of polyaromatic amine–ferromagnetic composite with nanosize TiO2 (~70–90 nm) and γ-Fe2O3 (~10–15 nm) particles via in situ emulsion polymerization. Magnetic and conductivity studies demonstrate that the conducting ferromagnetic composite possesses saturation magnetization (MS) value of 26.9 emu g?1 and conductivity of the order of 0.46 S cm?1, which are measured by vibrating sample magnetometer and four-probe technique, respectively. It is observed that the presence of the nanosized γ-Fe2O3 in the polyaniline–TiO2 matrix affects the electromagnetic shielding property of the composite. Polyaniline–TiO2–γ-Fe2O3 nanocomposite has shown better shielding effectiveness due to absorption (SEA  45 dB) than the polyaniline-γ-Fe2O3 (SEA  8.8 dB) and polyaniline–TiO2 (SEA  22.4 dB) nanocomposite. The polymer composites were further characterized by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) technique.  相似文献   

4.
Ultra-fine grained γ-Ni–xFe (x = 20, 50, and 64 (nominal)) dispersed Al2O3-matrix composites were fabricated by a mechano-chemical process plus hot-pressing, and their mechanical and magnetic properties were explored. The results indicated that all composites incorporated with different γ-Ni–xFe alloys possessed high densities (relative density D  98%) and sub-micrometer-sized matrix dispersed with γ-Ni–xFe particles of sizes below ∼500 nm. As compared to other two composite systems, γ-Ni–20Fe/Al2O3 had finer microstructures and displayed superior fracture toughness and strength. In high iron-contained γ-Ni–64Fe/Al2O3 composite undesired FeAl2O4 phase formed on the matrix grain boundaries, which is mainly responsible for its inferior mechanical properties. Although Young’s modulus and hardness of Ni–20Fe/Al2O3 composite system decreased, its fracture toughness increased monotonously with increasing the alloy content in the composition range investigated. Moreover, incorporation of ferromagnetic γ-Ni–xFe particles led all the composite systems to display ferromagnetism with their saturation magnetization increasing almost linearly with increasing alloy content. In addition, experiments showed that their ferromagnetism had high thermal stability (Tc = ∼580 °C), no obvious magnetism degradation and magnetic interactions of the alloys with the matrix being observed. The combination of good mechanical properties with excellent magnetic performance would make this material be very valuable in industry.  相似文献   

5.
《Materials Research Bulletin》2013,48(11):4723-4728
Self-dopant LaMnO3+δ nanoparticles have been successfully synthesized by metal citrate complex method based on Pechini-type reaction route, at low temperature (773 K). Powder X-ray diffraction and transmission electron microscope revealed pure and nanostructured phase of LaMnO3+δ (δ = 0.125) with an average grain size of ∼72 nm (773 K) and ∼80 nm (1173 K). DC-magnetization measurements under an applied magnetic field of H = ±60 kOe showed an increase in the magnetization with the increase of calcination temperature. Ferromagnetic nature shown by non-stoichiometric LaMnO3+δ was verified by well-defined hysteresis loop with large remanent magnetization (Mr) and coercive field (Hc). Surface areas of LaMnO3+δ nanoparticles were found to be 157.4 and 153 m2 g−1 for the samples annealed at 773 K and 1173 K, respectively.  相似文献   

6.
Four kinds of plasma-synthesized core–shell type α-Fe nanoparticles with various particle diameters, input composition of shell’s raw materials, and shell compounds were used to investigate dependence of these nanoparticle parameters on nitridation and magnetic performance. Effects of hydrogen-gas reduction conditions (i.e., temperature and reduction time) prior to nitridation treatment were also investigated in detail. Experimental result showed that the nanoparticle parameters and the hydrogen reduction treatment influenced yield of α″-Fe16N2. Increases in particle diameter and shell amount resulted in the more difficulties in nitridation reaction because of the limitation in nitrogen diffusion phenomena. Changes in shell compound from Al2O3 to SiO2 resulted in the more difficulties in α″-Fe16N2 phase formation. We also found that modification of reduction conditions affect the final product quality. We obtained that by optimization the nanoparticle parameters and the reduction process, the formation of nanoparticles with high yield of α″-Fe16N2 (up to 99%) can be achieved. Finally, we found that for 43-nm core–shell Fe/Al2O3 magnetic nanoparticles containing 10 wt% of Al2O3, the combination of 1.5-h reduction at 300 °C and 10-h nitridation at 145 °C gave the highest yield of α″-Fe16N2. The best saturation magnetization of 190 emu/g was achieved when using the amount of Al2O3 of 20 wt%.  相似文献   

7.
《Materials Research Bulletin》2013,48(11):4693-4698
A facile one-pot method has been developed to prepare poly(amino acid) functionalized, water-stable, biocompatible, and superparamagnetic iron oxide nanoparticles (NPs) with small diameters of ∼10 nm. The obtained biocompatible magnetic nanoparticles capped with polyaspartic acid (PASP) exhibit a relatively high saturation magnetization (57.1 emu/g) and a much strong magnetic resonance (MR) T2 relaxation effect with the transverse relaxivity coefficient (r2) as high as 302.6 s−1 mM−1. Interestingly, the as-prepared Fe3O4@PASP NPs are highly stable in aqueous solution and demonstrate the property of magnetic nanofluids. The high T2 effect, good water-stability, superparamagnetization, biocompatibility and bioconjugatability render the as-synthesized Fe3O4@PASP NPs great desirable for bioapplications such as magnetic resonance imaging (MRI), bioseparation, targeted drug delivery, and so on.  相似文献   

8.
Superparamagnetic Fe3O4/Au nanoparticles were synthesized and surface modified with mercaptopropionic acid (MPA), followed by conjugating Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate (ANTA) and subsequently chelating Co2 +. The resulting Fe3O4/Au–ANTA–Co2 + nanoparticles have an average size of 210 nm in aqueous solution, and a magnetization of 36 emu/g, endowing the magnetic nanoparticles with excellent magnetic responsivity and dispersity. The Co2 + ions in the magnetic nanoparticle shell provide docking site for histidine, and the Fe3O4/Au–ANTA–Co2 + nanoparticles exhibit excellent performance in binding of a His-tagged protein with a binding capacity of 74 μg/mg. The magnetic nanoparticles show highly selective purification of the His-tagged protein from Escherichia coli lysate. Therefore, the obtained Fe3O4/Au–ANTA–Co2 + nanoparticles exhibited excellent performance in the direct separation of His-tagged protein from cell lysate.  相似文献   

9.
Porous α-Fe2O3 nanorods with typical pore size of 2–4 nm were controlled prepared by a facile hydrothermal process of Fe(NO3)3·9H2O aqueous solution in the presence of NaOH, followed by a calcination treatment. Contrast experiments indicate that the morphology and crystalline structure of the hydrothermal products depend greatly on the quantity of NaOH. Hematite nanoparticles and microplates were respectively obtained under conditions without or with excess NaOH. The porous α-Fe2O3 nanorods exhibit a high BET surface area of 105.1 m2 g?1 and a pore volume of 0.13 m3 g?1. UV–vis measurement shows wide absorption to visible light and an obvious blue-shift of the adsorption edge due to the quantum size effect. The visible-light photocatalytic performances of the as-prepared samples were evaluated by photocatalytic decolorization of methylene blue at ambient temperature. The results indicate that the photocatalytic activity of the porous α-Fe2O3 nanorods is superior to hematite nanoparticles and platelets and exhibit good reusable feature. The photocatalytic process of porous structure is determined to be pseudo-first-order reaction with apparent reaction rate constant of 1.04 × 10?2 min?1. And the optimum photocatalyst dosage is 20 mg per 100 mL of dye solution. The porous α-Fe2O3 nanorods are considered potential photocatalyst for practical application due to the excellent photocatalytic behavior and good reusability.  相似文献   

10.
The purpose of this research was to synthesize amino modified Fe3O4/SiO2 nanoshells for biomedical applications. Magnetic iron-oxide nanoparticles (NPs) were prepared via co-precipitation. The NPs were then modified with a thin layer of amorphous silica. The particle surface was then terminated with amine groups. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g? 1 for uncoated Fe3O4 NPs and it increased to about 208 m2 g?1 for 3-aminopropyltriethoxysilane (APTS) coated Fe3O4/SiO2 NPs. The total thickness and the structure of core-shell was measured and studied by transmission electron microscopy (TEM). For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of (80–100) emu g?1 and coercivity of (80–120) Oe for particles between (35–96) nm, respectively. The Fe3O4/SiO2 NPs with 50 nm as particle size, demonstrated a magnetization value of 30 emu g?1. The stable magnetic fluid contained well-dispersed Fe3O4/SiO2/APTS nanoshells which indicated monodispersity and fast magnetic response.  相似文献   

11.
With same procedure and same starting materials, nearly monodispersed α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles were synthesized on an large scale of about 60 g in a single reaction through a low temperature sol–gel route. The simple preparation process includes the reactions between FeCl2 and propylene oxide in ethanol solution at boiling point to form a sol and the following drying of the sol. The different iron oxide phases can be obtained just by changing of the drying conditions for the sol solution. The strategy developed in this study offers important advantages over the conventional routes for the synthesis of α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles, showing potential for its application in industrial production of iron oxides.  相似文献   

12.
CuO/Fe2O3 hollow hybrid spheres with the size of 3–5 μm were successfully synthesized by a convenient hydrothermal method, using FeSO4·7H2O and CuSO4·5H2O as the starting materials and urea as the homogeneous precipitant. The samples were characterized by XRD, TEM, ED, SEM, EDX, IR and XPS measurements. XRD and XPS analyses indicated that the nanostructured materials consisted of CuO and α-Fe2O3. TEM and SEM measurements showed that the morphology of binary metal oxide was in the shape of hollow sphere. Careful observation from SEM measurements could find that CuO/Fe2O3 hollow microsphere shell was composed of uniform and dense metal oxide nanorods with about 20–40 nm in diameter and 100–200 nm in length. Moreover, the influence of calcination temperature on the thermal stability of the hollow structures was investigated. It showed that the hollow structure was stable after being calcined at 300 °C for 2 h. The formation mechanism of the CuO/Fe2O3 hollow spheres under hydrothermal condition was discussed.  相似文献   

13.
Urchin-like α-Fe2O3 superstructures have been deposited on Si substrate using thermal decomposition FeCl3 solution at 200–600 °C in the oven. The morphologies and structures of the synthesized urchin-like superstructures have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results show that urchin-like α-Fe2O3 superstructures were a polycrystal with the rhombohedral structure and typical diameters of 16–20 nm and lengths up to 1.0 μm. The as-prepared α-Fe2O3 superstructures have a high Brunauer–Emmett–Teller (BET) surface area of about 60.24 m2/g. The photoluminescence spectrum of the urchin-like α-Fe2O3 superstructures consists of one weak emission peak at 548 nm (2.26 eV). A possible new mechanism for the formation of the urchin-like superstructures was also preliminarily discussed.  相似文献   

14.
Magnetite (Fe3O4) nanoparticles were controllably synthesized by aerial oxidation FeIIEDTA solution under different monowavelength light-emitting diode (LED) lamps irradiation at room temperature. The results of the X-ray diffraction (XRD) spectra show the formation of magnetite nanoparticle further confirmed by Fourier transform infrared spectroscope (FTIR) and the difference in crystallinity of as-prepared samples. Fe3O4 particles are nearly spherical in shape based on transmission electron microscopy (TEM). Average crystallite sizes of magnetite can be controlled by different irradiation light wavelengths from XRD and TEM: 50.1, 41.2, and 20.3 nm for red, green, and blue light irradiation, respectively. The magnetic properties of Fe3O4 samples were investigated. Saturation magnetization values of magnetic nanoparticles were 70.1 (sample M-625), 65.3 (sample M-525), and 58.2 (sample M-460) emu/g, respectively.  相似文献   

15.
Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles as a novel organic–inorganic hybrid heterogeneous catalyst was fabricated and characterized by XRD, FT-IR, TGA, TEM and VSM techniques. Composition was determined as Fe3O4, while particles were observed to have spherical morphology. Size estimations using X-ray line profile fitting (10 nm), TEM (11 nm) and magnetization fitting (9 nm) agree well, revealing nearly single crystalline character of Fe3O4 nanoparticles. Magnetization measurements reveal that PPCA functionalized Fe3O4 NPs have superparamagnetic features, namely immeasurable coercivity and absence of saturation. Small coercivity is established at low temperatures. The catalytic activity of Fe3O4–PPCA was probed through one-pot synthesis of nitro alkenes through Knoevenagel reaction in CH2Cl2 at room temperature. The heterogeneous catalyst showed very high conversion rates (97%) and could be recovered easily and reused many times without significant loss of its catalytic activity.  相似文献   

16.
《Materials Letters》2006,60(21-22):2718-2722
Ferroxplana type hexagonal ferrite with composition Ba2Co2Fe12O22 (Co2Y) was prepared by polymeric sol–gel method from the aqueous solution of their corresponding metal salts. All the samples were characterized by using X-ray diffraction and scanning electron microscopic technique. The formation and the microstructure of the Ba2Co2Fe12O22 was studied as a function of heat treatment temperature and it was observed that well defined hexagonal plate-like fine particles with particle sizes between 130 and 400 nm were formed at relatively lower temperature (900 °C) as compared to conventional solid state reaction method (1100 °C). Magnetic properties of the samples were also studied as a function of heat treatment temperature and it showed large saturation magnetization (Ms) ranging from 30.9 to 47.6 emu/g and a wide range of coercivity (130∼1566 Oe) depending on the heat treatment temperature. The very high saturation magnetization at relatively lower temperature (say 800 °C) arises due to the presence of several high magnetic impurities, such as BaFe12O19 and CoFe2O4. The saturation magnetization increases with increasing heat treatment temperature above 900 °C, while the coercivity showed a reversed order.  相似文献   

17.
Cobalt ferrite (CoFe2O4)/carbon nanotube (CNT) magnetic nanocomposites were synthesized by a facile solvothermal method. X-ray powder diffractometry (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), High-resolution electron microscopy (HRTEM) analyses demonstrate that cubic CoFe2O4 nanoparticles were immobilized on the external surfaces of the CNTs. Vibrating sample magnetometer (VSM) measurements indicated that the nanocomposites at room temperature were superparamagnetic with a saturation magnetization of 29.6 emu g?1.  相似文献   

18.
《Materials Research Bulletin》2006,41(8):1520-1529
This work studies the synthesis of γ-Al2O3 nanopowders by a freeze-drying method. Aqueous solutions of Al2(SO4)3·18H2O were used as precursors to Al concentrations of 0.76, 1.00 and 1.40 M. Homogeneous spherical granules with diameters ranging from 1 to 100 μm have been obtained. These porous granules are constituted by soft agglomerates of nanoparticles with primary particle size lower than 20 nm. The microstructure of the agglomerates largely depends on the freezing kinetics. After drying amorphous aluminium sulphate powder is obtained that decomposes at 825 °C leading to the formation of γ-Al2O3. Physicochemical study of the freeze-dried powders is performed through particle size distribution and zeta potential measurements. The characterisation of the powders is evaluated considering the influence of processing parameters such as the salt concentration, the freezing rate and the thermal treatment for the synthesis and the dispersing conditions of the obtained powders. By adjusting the dispersing conditions a minimum particle size <30 nm is measured, thus confirming that granules can be easily dispersed into nanoparticles.  相似文献   

19.
Uniform single crystalline α-Fe2O3 nanoplatelets with a diameter of about 100 nm and a thickness of about 20 nm were fabricated in high yield through a simple complex-copolymer hydrothermal method. Contrast experiments indicated that formation of the single crystalline α-Fe2O3 ellipsoids could be ascribed to the cooperative effect of PEO20PPO70PEO20 (P123) triblock copolymer template and citrate complexation. Compared with the bulk counterpart, thus-prepared α-Fe2O3 nanoplatelets exhibited a wider band gap of 2.25 eV, which could be ascribed to the nanosize effect.  相似文献   

20.
Maghemite (γ-Fe2O3) nanoparticles were synthesized via a low-temperature solution-based method using ferric chloride hexahydrate and ferrous chloride tetrahydrate as precursors in the mixed solvent of ethanol and water. X-ray diffraction, energydispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy revealed that the obtained product was pure γ-Fe2O3. Transmission electron microscopy showed the morphology of the nanoparticles to be approximately spherical in shape with an average diameter of 11 nm. Magnetization measurements indicated the dry powders exhibit ferromagnetic behavior with a maximum saturation magnetization of 41.1 emu/g at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号