首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Wear》2007,262(5-6):641-648
The present study concerns the wear behavior of laser composite surfaced Al with SiC and Al + SiC particulates. A thin layer of SiC and Al + SiC (at a ratio of 1:1 and dispersed in alcohol) were pre-deposited (thickness of 100 μm) on an Al substrate and laser irradiated using a high power continuous wave (CW) CO2 laser. Irradiation leads to melting of the Al substrate with a part of the pre-deposited SiC layer, intermixing and followed by rapid solidification to form the composite layer on the surface. Following laser irradiation, a detailed characterization of the composite layer was undertaken in terms of microstructure, composition and phases. Mechanical properties like microhardness and wear resistance were evaluated in detail. The microstructure of the composite layer consists of a dispersion of partially melted SiC particles in grain refined Al matrix. Part of the SiC particles are dissociated into silicon and carbon leading to formation of the Al4C3 phase and free Si redistributed in the Al matrix. The volume fraction of SiC is maximum at the surface and decreases with depth. The microhardness of the surface improves by two to three times as compared to that of the as-received Al. A significant improvement in wear resistance in the composite surfaced Al is observed as compared to the as-received Al. The mechanism of wear for as-received vis-à-vis laser composite surfaced Al has been proposed.  相似文献   

2.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

3.
《Wear》2002,252(7-8):662-667
The friction and wear properties of the ionic ceramics Al2O3 and ZrO2, and the covalent ceramics Si3N4 and SiC rubbing against an Al2O3 ball in vacuum (10−5 Pa) and in CF3CH2F (HFC-134a) gas at 104 Pa were investigated using a ball-on-disk type tribometer. Without exposure to air, the surface composition and chemical state of the wear tracks and debris on the disks were determined with X-ray photoelectron spectroscopy (XPS). It is found that HFC-134a gas significantly reduces the friction and wear of all the ceramic couples, and that the ionic ceramic pairs show lower friction and wear. On the other hand, metal fluorides and/or fluorine-containing organic compounds are detected on the sliding surfaces. The differences in the friction–wear behavior of the ceramics rubbing in HFC-134a gas may be due to the products of tribochemical reactions, which are dependent on the bond type of the ceramics.  相似文献   

4.
Wear behavior of nanostructured Al6061 alloy and Al6061–Al2O3 nanocomposites produced by milling and hot consolidation were investigated. The samples were characterized by hardness test, pin-on-disk wear test, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposites containing 3 vol% Al2O3 showed a maximum hardness of 235 HV and optimum wear rate of 4×10−3 mg/m. Increasing the amount of Al2O3 up to 5 vol% resulted in decrease in hardness values (∼112 HV) and a sharp rise in wear rate (∼18×10−3 mg/m).  相似文献   

5.
《Wear》2006,260(1-2):1-9
In the present work, we report the processing and properties of WC–6 wt.% ZrO2 composites, densified using the pressureless sintering route. The densification of the WC–ZrO2 composites was carried out in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y-stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. An important observation is that a transition in friction and wear with load is noted. The dominant mechanisms of material removal appear to be tribochemical wear and spalling of tribolayer.  相似文献   

6.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

7.
Hong Chang  Jon Binner  Rebecca Higginson 《Wear》2010,268(1-2):166-171
Aluminium alloys, reinforced with ceramic particles or fibres, are desired materials in high performance applications due to their superior properties. In this paper, gel-cast Al2O3 foams were pressurelessly infiltrated using an Al–8 wt.% Mg alloy. The wear rates of the alloy and the Al(Mg)/Al2O3 interpenetrating composites were tested under dry sliding conditions; effects of Al2O3 foam density and cell size on the composite wear resistance under different loads and sliding distances were investigated. A ‘ploughing’ mechanism was observed in all the composites after an initial 250 m sliding distance, whilst the composites with the higher foam density show a ‘two-stage’ wear with sliding distance. The decrease in the wear rate in the second stage in the latter is attributed to an Al2O3 network protruding out of the worn surface, which protects the direct wear of the Al(Mg) alloy by the counter ball. Within the range studied, a larger cell size is preferred for better wear resistance.  相似文献   

8.
With the increased requirements for environmental protection, energy conservation, and low consumption, nanofluid minimal quantity lubrication (MQL) grinding, which is an environment-friendly machining method, has been paid increasing attention. Improving the lubricating property of nanofluids effectively is currently a main research trend. Meanwhile, optimizing mixed nanoparticle (NP) size ratio is an effective way for enhancing the lubricating property of MQL grinding. In the experiment, different sizes (30, 50, and 70 nm) of Al2O3 and SiC NPs were mixed, and nanofluids were prepared at 2% (volume fraction) mixed NPs and base oil. The prepared nanofluids were then used in MQL grinding on a hard Ni-based alloy (inconel 718). The experiment was then evaluated by specific grinding force, removal rate of workpiece, surface roughness, morphology of grinding debris, and contact angle. The effect of the sizes of the Al2O3/SiC mixed NPs on MQL grinding performance was discussed in accordance with the period and amplitude, as well as cross-correlation coefficient, of the workpiece surface cross-correlation function curve profile. Experimental results suggest that different Al2O3/SiC mixed NP sizes affect the nanofluid MQL grinding performance variably. The highest removal rate of the workpiece [189.05 mm3/(s N)] and the lowest RSm (0.0381 mm) were achieved when the Al2O3/SiC mixed NP size ratio was 70:30. The lowest Ra (0.298 μm) was obtained at 50:30. Meanwhile, the highest length ratio of the profile support (90%), the best morphology of abrasive dusts, and the largest wetting area of liquid drops were acquired at 30:70. Furthermore, a cross-correlation analysis of the workpiece surface profile curve under three size ratios (30:70, 50:30, and 70:30) was carried out. The cross-correlation function curve of the workpiece surface profile under 30:70 attained the shortest period, the largest amplitude, and the largest cross-correlation coefficient (0.67), thereby indicating good workpiece surface quality. Therefore, 30:70 was the best size ratio of the Al2O3/SiC mixed nanofluid.  相似文献   

9.
《Wear》2006,260(7-8):766-782
The influence of the alkyl chain length and of the anion on the lubricating ability has been studied for the room-temperature ionic liquids (IL) 1-n-alkyl-3-methylimidazolium X [X = PF6; n = 6 (L-P106). X = BF4; n = 2 (L102), 6 (L106), 8 (L108). X = CF3SO3; n = 2 (L-T102). X = (4-CH3C6H4SO3); n = 2 (L-To102)]. Neat IL have been used for AISI 52100 steel-ASTM 2011 aluminium contacts in pin-on-disk tests under variable sliding speed. While all IL give initial friction values lower than 0.15, real-time sharp friction increments related to tribochemical processes have been observed for L102 and L-P106, at room-temperature and at 100 °C. Electronic microscopy (SEM), energy dispersive (EDS) and X-ray photoelectron (XPS) spectroscopies show that wear scar surfaces are oxidized to Al2O3 and wear debris contain aluminium and iron (for L102) fluorides. For L-P106, the steel surface is covered with a P-containing tribolayer. A change of anion (L-T102; L-To102) reduces friction and wear, but the lowest values are obtained by increasing the alkyl chain length (L106; L108). When the more reactive L102 and L-P106 are used as 1 wt.% base oil additives at 25 °C, tribocorrosion processes are not observed and a friction reduction (69–75% for 1 wt.% L102) and a change from severe (10−3 mm3 m−1) to mild wear (10−4 to 10−6 mm3 m−1) is obtained with respect to the neat IL. 1 wt.% IL additives also show good lubricating performance at 100 °C.  相似文献   

10.
This paper reports on the optimization of (Ti,Si,Al)Nx coatings to improve the performance of coated tools in dry cutting applications. The performance and the wear mechanisms of (Ti,Si,Al)Nx tungsten carbide coated tools were investigated. Tool life and tool failure modes were thoroughly examined by scanning electron microscopy (SEM) complemented with energy dispersive spectroscopy (EDS) in order to study the wear mechanisms. After 15 min at high cutting speed (200 m/min), the cutting edges of almost all the coatings still remained in good conditions. The results presented on this paper confirmed that nc-(Ti1?xAlx)/a-SiNx nanocomposite coatings offer a significant potential to operate in extreme environments, since this coating outperformed one of the best solutions actually available in the market for high speed turning. An improvement on the tribological behaviour of (Ti,Si,Al)Nx films was also observed with thermal annealing before the turning tests, due to a self hardening effect as consequence of the spinodal segregation of the (Ti,Al,Si)N metastable phase. On the other hand, no significative increase on the performance of the coated tools was observed with depositing an amorphous Al2O3 interlayer.  相似文献   

11.
Nanostructured Cu–Al2O3 powders obtained by the reduction of CuO with Al in a high energy ball mill were successfully consolidated by Pulsed Electric Current Sintering (PECS). The effect of the composition and microstructure of these PECS Cu–Al2O3 cermets on their strength was investigated. The friction and wear behavior of these cermets were studied under reciprocating sliding against corundum at 23 °C and 50% RH, and compared to the behavior of coarse grained PECS sintered pure copper. The effect of grain size on the coefficient of friction was masked by the formation of a surface tribolayer. The wear depth recorded on Cu–Al2O3 is lesser than half the one on coarse grained copper. Surface and subsurface deformation studied through FIB cross-sections showed that delamination and oxidative wear were active on Cu and Cu–Al2O3 cermets respectively under the current sliding test conditions. PECS Cu–Al2O3 cermets showed a good thermal stability even at 600 °C.  相似文献   

12.
NiAl, NiAl–Cr–Mo alloy and NiAl matrix composites with addition of oxides (ZnO/CuO) were fabricated by powder metallurgy route. It was found that some new phases (such as NiZn3, Cu0.81Ni0.19 and Al2O3) are formed during the fabrication process due to a high-temperature solid state reaction. Tribological behavior was studied from room temperature to 1000 °C on an HT-1000 ball-on-disk high temperature tribometer. The results indicated that NiAl had high friction coefficient and wear rate at elevated temperatures, while incorporation of Cr(Mo) not only enhanced mechanical properties evidently but also improved high temperature tribological properties. Among the sintered materials, NiAl matrix composite with addition of ZnO showed the lowest wear rate at 1000 °C, while CuO addition into NiAl matrix composite exhibited the self-lubricating performance and the best tribological properties at 800 °C.  相似文献   

13.
《Wear》2007,262(1-2):79-92
Wear tests were conducted on three commercial grade Al–Si alloys, a die cast 383 with 9.5 wt.% Si, a sand cast A390 with 18.5 wt.% Si and a spray cast alloy with 25 wt.% Si under dry sliding conditions. In addition, heat treatment processes were used to modify the microstructure and hardness of 383 alloy. This selection of materials and heat treatments provided a broad range of samples with different silicon weight percentage, morphology, size, and alloy hardness for comparison purposes. Using a method of pair-wise comparison, it was found that the effect of the individual contribution of each microstructural feature on the wear resistance could be isolated.Block-on-ring tests were performed under a controlled atmosphere of 5% relative humidity at a constant speed of 1 m/s. A mild to severe wear transition occurred at loads above 150 N irrespective of the alloy composition and microstructure. The mild wear regime consisted of two sub-regimes that were named as the first sub-regime of mild wear (MW-1) at low loads and the second sub-regime of mild wear (MW-2) at higher loads. The steady state wear rates (W) in each sub-regime of the mild wear showed a power-law dependence to the applied load (L) as W = CLn, where C is the wear coefficient, and n is the wear exponent. The wear coefficients, C1 of MW-1 and C2 of MW-2, and the transition loads L1 and L2, which denoted the start and end of the transition zone between MW-1 to MW-2, were sensitive to microstructure.Pair wise comparisons showed that an increase in the Si content from 9.5 to 25 wt.% increased the transition load L1 by 140%, but had only a minor effect on C. An increase in alloy hardness from 31.6 to 53.5 kg/mm2 provided a very significant increase in the transition loads (e.g., 400% increase in L1), but did not have a notable effect on the values of C (only 3% increase). On the other hand, a decrease in the silicon particle aspect ratio from 3.75 to 1.98 increased L1 by 25% and reduced C1 by 25% (and C2 by 31%). A decrease in the silicon particle size from 45.8 to 3.1 μm had the most significant effect on both wear parameters by reducing C1 by 35% and C2 by 58%, and increasing the transition load L1 by 71%.  相似文献   

14.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

15.
This paper presents the results of an experimental investigation on the wear mechanisms of uncoated tungsten carbide (WC) and coated tools (single-layer (TiAlN) PVD, and triple-layer (TiCN/Al2O3/TiN) CVD) in oblique finish turning of Inconel 718. Tool wear rate and wear mechanisms were evaluated for cutting speeds, 50<V<100 m/min, and feed rates, 0.075<f<0.125 mm/rev, at a constant depth of cut of 0.25 mm. It was concluded that abrasive and adhesive wear were the most dominant wear mechanisms, controlling the deterioration and final failure of the WC tools. While the triple layer CVD coated tools exhibited the highest wear resistance at high cutting speeds and low feeds, uncoated tools outperformed the single and multi-layer coated tools in the low range of cutting speeds and intermediate feeds. The cutting tool with single-layer PVD coating outperformed the other tools at the medium cutting speed.  相似文献   

16.
《Wear》2006,260(4-5):379-386
SiO2, TiO2, and hydroxyapatite (HA) thin films with good biocompatibility were grown on Ti–6Al–4V (coded as TC4) substrate by sol–gel and dip-coating processes from specially formulated sols, followed by annealing at 500 °C The chemical states of some typical elements in the target films were detected by means of X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) and high-resolution scanning electron microscopy (SEM) are applied to characterize the original unworn films. The tribological properties of thin films sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the result, the target films composed of nano-particles ranging from 30 nm to 100 nm around were obtained. All the sol–gel ceramic films are superior in resisting wear compared with the TC4 substrate. Among all, HA film shows the best resistance while SiO2 film shows the worst wear resistance both under higher (3 N) and lower load (1 N). TiO2 shows good wear resistance under lower load (1 N). SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro-fracture dominate the wear of ceramic films. The superior friction reduction and wear resistance of HA film is greatly due to the slight plastic deformation of the film. It is supposed that the deformation of the HA film is closely related to the special arrangement of the nano-particles and microstructure. HA film is recommended for clinical application from the point of wear resistance view.  相似文献   

17.
Alumina-carbon nanofibres (CNFs) and silicon carbide–CNFs nanocomposites with different volume fraction of CNFs (0–100 vol.%) were obtained by spark plasma sintering. The effect of CNFs content on the tribological behaviour in dry sliding conditions on the ceramic–carbon nanocomposites has been investigated using the ball-on-disk technique against alumina balls. The wear rate of ceramic–CNFs nanocomposites decreases with CNFs increasing content. The friction coefficient of the Al2O3/CNFs and SiC/CNFs nanocomposites with high CNFs content was found to be significantly lower compared to monolithic Al2O3 and SiC due to the effect of CNFs and unexpectedly slightly lower than CNFs material. The main wear mechanism in the nanocomposite was abrasion of the ceramic and carbon components which act in the interface as a sort of lubricating media. The experimental results demonstrate that the addition of CNFs to the ceramic composites significantly reduces friction coefficient and wear rate, resulting in suitable materials for unlubricated tribological applications.  相似文献   

18.
《Wear》2006,260(7-8):915-918
Past studies with PTFE nanocomposites showed up to 600× improvements in wear resistance over unfilled PTFE with the addition of Al2O3 nanoparticles. Irregular shaped nanoparticles are used in this study to increase the mechanical entanglement of PTFE fibrils with the filler. The tribological properties of 1, 2, 5 and 10 wt.% filled samples are evaluated under a normal pressure and sliding speed of 6.3 MPa and 50.8 mm/s, respectively. The wear resistance was found to improve 3000× over unfilled PTFE with the addition of 1 wt.% nanoparticles. The 5 wt.% sample had the lowest steady state wear rate of K = 1.3 × 10−7 mm3/N m and the lowest steady friction coefficient with μ = 0.21.  相似文献   

19.
Guoliang Pan  Qiang Guo  Weidong Zhang  Aiguo Tian 《Wear》2009,266(11-12):1208-1215
The influence of diameter and content of Al2O3 particles on the tribological behaviors under fretting wear mode was investigated. The surface of PEEK composite and steel ball were examined by SEM and EDS, to identify the topography of wear scar and analyze the distribution of chemical elements in the friction counterparts, respectively. It can be found that the filling of Al2O3 powder improves the fretting wear resistance of PEEK composite. With the increase of Al2O3 diameter, the area of wear scar on specimen increases first and decreases afterward. However, the wear of composites increases monotonically with increasing Al2O3 content. Although the filling of 10 wt.% and 200 nm PTFE powder in PEEK makes the lowest wear of all specimens, no synergistic effect was found when Al2O3 and PTFE were filled into PEEK composite together. For the friction pair of PEEK composite and steel ball, abrasive wear and adhesive wear dominate the fretting wear mechanism during fretting. Thermal effect plays a very important role during fretting; thus the property of temperature resistance for polymer material would affect the wear degree on the surface of wear scar.  相似文献   

20.
Hardmetal coatings prepared by high velocity oxy-fuel (HVOF) spraying represent an advanced solution for surface protection against wear. In the current systematic study the high-temperature oxidation and unidirectional sliding wear in dry and lubricated conditions were studied. Results for a series of experiments on self-mated pairs in dry conditions as part of that work are described in this paper. Coatings with nominal compositions WC-10%Co4%Cr, WC-(W,Cr)2C-7%Ni, Cr3C2-25%NiCr, (Ti,Mo)(C,N)-29%Ni and (Ti,Mo)(C,N)-29%Co were prepared with an ethylene-fuelled DJH 2700 HVOF spray gun. Electrolytic hard chromium (EHC) coatings and bulk (Ti,Mo)(C,N)-15%NiMo (TM10) hardmetal specimens were studied for comparison. The wear behaviour was investigated at room temperature, 400 and 600 °C. For the coatings sliding speeds were varied in the range 0.1–1 m/s for a wear distance of 5000 m and a normal force of 10 N. In some cases the WC- and (Ti,Mo)(C,N)-based coatings showed total wear rates (sum of wear rates of the rotating and stationary samples) of less than 10?6 mm3/Nm, i.e., comparable to values typically measured under mixed/boundary conditions. Coefficients of friction above 0.4 were found for all test conditions. The P × V values as an engineering parameter for coating application are discussed. The microstructures and the sliding wear behaviour of the (Ti,Mo)(C,N)-based coatings and the (Ti,Mo)(C,N)-15%NiMo hardmetal are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号