首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large-eddy simulations of film cooling flows   总被引:1,自引:0,他引:1  
Large-eddy simulations (LES) of a jet in a cross-flow (JICF) problem are carried out to investigate the turbulent flow structure and the vortex dynamics in gas turbine blade film cooling. A turbulent flat plate boundary layer at a Reynolds number of Re = 400,000 interacts with a jet issued from a pipe. To study the effect of the jet inclination angle α on the flow field, two angles are chosen, the perpendicular injection at 90° and the streamwise inclined injection at 30°. For the normal injection case a small blowing ratio of the jet velocity to the cross-stream velocity R = 0.1 is examined. For the streamwise inclined injection case two blowing ratios R = 0.1 and R = 0.48 are investigated to check the impact of the jet velocity on the cooling performance. The time-dependent turbulent inflow information for the cross-flow is provided by a simultaneously performed LES of a spatially developing turbulent boundary layer. Whereas in the perpendicular injection case a rather large separation region is found at the leading edge of the jet hole, in the streamwise inclined injection cases no separation is observed. Compared with the normal injection case at the same blowing ratio, the streamwise inclination weakens the jet-cross-flow interaction significantly. Thus, the first appearance of the counter-rotating vortex pair (CVP) is shifted downstream and its strength is reduced. The increase of the blowing ratio leads to a stronger penetration of the jet into the cross-flow, resulting in a more upstream located and more pronounced CVP. Downstream of the jet exit the streamwise vortices are so large that besides the jet fluid also the cross-stream is partially entrained into this zone, which yields the worst cooling performance.  相似文献   

2.
《Computers & Fluids》2006,35(8-9):898-909
We quantitatively evaluate the capability and accuracy of the lattice Boltzmann equation (LBE) for modeling flow through porous media. In particular, we conduct a comparative study of the LBE models with the multiple-relaxation-time (MRT) and the Bhatnagar–Gross–Krook (BGK) single-relaxation-time (SRT) collision operators. We also investigate several fluid–solid boundary conditions including: (1) the standard bounce-back (SBB) scheme, (2) the linearly interpolated bounce-back (LIBB) scheme, (3) the quadratically interpolated bounce-back (QIBB) scheme, and (4) the multi-reflection (MR) scheme. Three-dimensional flow through two porous media—a body-centered cubic (BCC) array of spheres and a random-sized sphere-pack—are examined in this study. For flow past a BCC array of spheres, we validate the linear LBE model by comparing its results with the nonlinear LBE model. We investigate systematically the viscosity-dependence of the computed permeability, the discretization error, and effects due to the choice of relaxation parameters with the MRT and BGK schemes. Our results show unequivocally that the MRT–LBE model is superior to the BGK–LBE model, and interpolation significantly improves the accuracy of the fluid–solid boundary conditions.  相似文献   

3.
We present 3-D large eddy simulation (LES) results for a turbulent Mach 0.9 isothermal round jet at a Reynolds number of 100,000 (based on jet nozzle exit conditions and nozzle diameter). Our LES code is part of a Computational Aeroacoustics (CAA) methodology that couples surface integral acoustics techniques such as Kirchhoff's method and the Ffowcs Williams– Hawkings method with LES for the far field noise estimation of turbulent jets. The LES code employs high-order accurate compact differencing together with implicit spatial filtering and state-of-the-art non-reflecting boundary conditions. A localized dynamic Smagorinsky subgrid-scale (SGS) model is used for representing the effects of the unresolved scales on the resolved scales. A computational grid consisting of 12 million points was used in the present simulation. Mean flow results obtained in our simulation are found to be in very good agreement with the available experimental data of jets at similar flow conditions. Furthermore, the near field data provided by the LES is coupled with the Ffowcs Williams–Hawkings method to compute the far field noise. Far field aeroacoustics results are also presented and comparisons are made with experimental measurements of jets at similar flow conditions. The aeroacoustics results are encouraging and suggest further investigation of the effects of inflow conditions on the jet acoustic field.  相似文献   

4.
Large eddy simulation (LES) is a promising technique for accurate prediction of turbulent free shear flows in a wide range of applications. Here the LES technique has been applied to study the intermittency in a high Reynolds number turbulent jet with and without a bluff body. The objective of this work is to study the turbulence intermittency of velocity and scalar fields and its variation with respect to different inlet conditions. Probability density function distributions (pdf) of instantaneous mixture fraction and velocity have been created from which the intermittency has been calculated. The time averaged statistical results for a round jet are first discussed and comparisons of velocity and passive scalar fields between LES calculations and experimental measurements are seen to be good. The calculated probability density distributions show changes from a Gaussian to a delta function with increased radial distance from the jet centreline. The effect of introducing a bluff body into the core flow at the inlet changes the structure of pdfs, but the variation from Gaussian to delta distribution is similar to the jet case. However, the radial variation of the intermittency indicates differences between the results with and without a bluff body at axial locations due the recirculation zone created by the bluff body.  相似文献   

5.
Large-eddy simulation (LES) of mixing process in a baffled tank was presented. The impeller rotation was modeled using the sliding mesh technique. In this study the CFD code was used for simulation of a standard vessel agitated by a 6-blade Rushton turbine and results were evaluated in terms of the predicted flow field, power number, mean velocity components, mixing time, turbulent kinetic energy and turbulent dissipation rate using published experimental data. Subsequently, the effects of varying injection position of the passive scalar have been investigated. The results show that LES is a reliable tool to investigate the unsteady behavior of the turbulent flow in stirred tank.  相似文献   

6.
The paper presents a detailed analysis of the flow over smoothly contoured constrictions in a plane channel. This configuration represents a generic case of a flow separating from a curved surface with well-defined flow conditions which makes it especially suited as benchmark case for computing separated flows. The hills constrict the channel by about one third of its height and are spaced at a distance of 9 hill heights. This setup follows the investigation of Fröhlich et al. [Fröhlich J, Mellen CP, Rodi W, Temmerman L, Leschziner MA. Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J Fluid Mech 2005;526:19-66] and complements it by numerical and experimental data over a wide range of Reynolds numbers. We present results predicted by direct numerical simulations (DNS) and highly resolved large-eddy simulations (LES) achieved by two completely independent codes. Furthermore, these numerical results are supported by new experimental data from PIV measurements. The configuration in the numerical study uses periodic boundary conditions in streamwise and spanwise direction. In the experimental setup periodicity is achieved by an array of 10 hills in streamwise direction and a large spanwise extent of the channel. The assumption of periodicity in the experiment is checked by the pressure drop between consecutive hill tops and PIV measurements. The focus of this study is twofold: (i) Numerical and experimental data are presented which can be referred to as reference data for this widely used standard test case. Physical peculiarities and new findings of the case under consideration are described and confirmed independently by different codes and experimental data. Mean velocity and pressure distributions, Reynolds stresses, anisotropy-invariant maps, and instantaneous quantities are shown. (ii) Extending previous studies the flow over periodic hills is investigated in the wide range of Reynolds numbers covering 100?Re?10,595. Starting at very low Re the evolution and existence of physical phenomena such as a tiny recirculation region at the hill crest are documented. The limit to steady laminar flow as well as the transition to a fully turbulent flow stage are presented. For 700?Re?10,595 turbulent statistics are analyzed in detail. Carefully, undertaken DNS and LES predictions as well as cross-checking between different numerical and experimental results build the framework for physical investigations on the flow behavior. New interesting features of the flow were found.  相似文献   

7.
A modified version of k-ε model is proposed through modification of the damping function of eddy viscosity that incorporates the effect of wall proximity in the near the wall region and the effect of non-equilibrium away from the wall together with the simple model functions in the ε equation. The proposed turbulence model is validated with the available experimental data of reattachment length, mean streamwise velocity distribution, turbulence intensity profile, and wall static pressure coefficient in the turbulent backward-facing step flows. The predicted results with the present model are in good agreement with the experiments. Computed results reveal that the reattachment length (recirculation zone) and the wall static pressure are decreased with increasing inlet velocity. And the asymmetric distributions of the reattachment point, cross-section view of velocity vector, streamwise skin friction coefficient, and turbulent kinetic energy demonstrate the important three-dimensional side-wall effect in an insufficient aspect ratio channel flow.  相似文献   

8.
In this paper, the multi relaxation time (MRT) lattice Boltzmann equation (LBE) was used to compute lid driven cavity flows at different Reynolds numbers (100–7500) and cavity aspect ratios (1–4 cavity width depth). Steady solutions were obtained for square cavity flows, however for deep cavity flows at 1.5 and 4 cavity width depth, unsteady solutions prevail at Re = 7500, where periodic flow exists manifested by the rapid changes of the shapes and locations of the corner vortices in strong contrast of the stationary primary vortex. The merger of the bottom corner vortices into a primary vortex and the reemergence of the corner vortices as the Reynolds number increases are more evident for the deep cavity flows. For the four cavity width depth cavity, four primary vortices were predicted by MRT model for Reynolds number beyond 1000, which were not predicted by previous single relaxation time (SRT) BGK LBE model, and this was verified by complementary Navier–Stokes simulations. Also, MRT model is more suitable for parallel computations than its BGK counterpart, due to the more intense local computations of the multi relaxation time procedure.  相似文献   

9.
The acoustic field of a cold single stream jet at Mach number 0.9 and Reynolds number 3600 is determined via computational aeroacoustics (CAA) methods. The jet computation of the acoustical field is performed by two hybrid approaches using a large-eddy simulation (LES) for the flow field and various systems of equations for the acoustical field to construct a robust, efficient, and reliable LES/CAA solver. The acoustic equations are the Ffowcs Williams-Hawkings equation (FWH) in the frequency domain and the acoustic perturbation equations (APE). The pronounced impact of the data windowing and the radial and streamwise extension of the integration surface on the directivity of the FWH solution is discussed at length. The comparison with available experimental and numerical results at similar flow conditions based on the noise characteristics in the near field shows the solution of the APE system to match the results of the direct LES more accurately than the FWH approach. The APE solution is less susceptible to the size of the source term region than the FWH approach to the location of the source surface. In conjunction with the APE formulation the LES domain can be chosen smaller than for the FWH ansatz resulting in less computational cost for the jet flow. The dominant source term in the APE system for cold jet noise is shown to be the Lamb vector.  相似文献   

10.
A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for the case of a jet in a cross flow with a delta tab placed on the windward side of the jet to inhibit mixing for film cooling applications. The flow configuration which was previously studied experimentally, involved a jet discharging normally from the floor of the wind tunnel test section into the cross flow with a momentum ratio (jet/cross-flow) of 36. The computed results are compared with the experimental data which include streamwise velocity and vorticity distributions at various axial locations downstream of the jet. The computational results show reasonably good agreement with the experimental data.  相似文献   

11.
Large eddy simulations (LES) are used to investigate turbulent isothermal swirling flows with a strong emphasis on vortex breakdown, recirculation and instability behaviour. The Sydney swirl burner configuration is used for all simulated test cases from low to high swirl and Reynolds numbers. The governing equations for continuity and momentum are solved on a structured Cartesian grid, and a Smagorinsky eddy viscosity model with the localised dynamic procedure is used as the sub-grid scale turbulence model. The LES successfully predicts both the upstream first recirculation zone generated by the bluff body and the downstream vortex breakdown bubble. The frequency spectrum indicates the presence of low frequency oscillations and the existence of a central jet precession as observed in experiments. The LES calculations well captured the distinct precession frequencies. The results also highlight the precession mode of instability in the center jet and the oscillations of the central jet precession, which forms a precessing vortex core. The study further highlights the predictive capabilities of LES on unsteady oscillations of turbulent swirling flow fields and provides a good framework for complex instability investigations.  相似文献   

12.
The applicability of several Lattice-Boltzmann methods to wall-bounded turbulent flows is investigated. The various methods consist of the standard Bhatnagar–Gross–Krook (BGK) method with 19 (BGK19) and 27 (BGK27) discrete velocities, the multiple-relaxation-time (MRT) model with 19 discrete velocities and the cascaded Lattice-Boltzmann method (CLB). Based on the findings of turbulent channel flow it can be concluded that stability considerations, predicting the superiority of the advanced moment based schemes like the CLB and MRT method not necessarily hold for wall-bounded turbulent flows. Moreover, in some flow problems the simple BGK method with 19 discrete velocities delivers reasonable and stable results, where the other methods yield unphysical solutions.  相似文献   

13.
A new method for the localization of the regions where small scale turbulent fluctuations are present in hypersonic flows is applied to the large-eddy simulation (LES) of a compressible turbulent jet with an initial Mach number equal to 5. The localization method used is called selective LES and is based on the exploitation of a scalar probe function ff which represents the magnitude of the stretching–tilting term of the vorticity equation normalized with the enstrophy (Tordella et al., 2007) [3]. For a fully developed turbulent field of fluctuations, statistical analysis shows that the probability that ff is larger than 2 is almost zero, and, for any given threshold, it is larger if the flow is under-resolved. By computing the spatial field of ff in each instantaneous realization of the simulation it is possible to locate the regions where the magnitude of the normalized vortical stretching–tilting is anomalously high. The sub-grid model is then introduced into the governing equations in such regions only. The results of the selective LES simulation are compared with those of a standard LES, where the sub-grid terms are used in the whole domain, and with those of a standard Euler simulation with the same resolution. The comparison is carried out by assuming as reference field a higher resolution Euler simulation of the same jet. It is shown that the selective LES modifies the dynamic properties of the flow to a lesser extent with respect to the classical LES. In particular, the prediction of the enstrophy, mean velocity and density distributions and of the energy and density spectra are substantially improved.  相似文献   

14.
In the development of synthetic jet actuators (SJAs) for active flow control, numerical simulation has played an important role. In controlling the boundary layer flow separation, an integrated numerical model which includes both the baseline flow and the SJA is still in its initial stage of development. This paper reports preliminary results of simulating the interaction between a synthetic jet and a laminar separation bubble caused by adverse pressure gradient in a boundary layer. The computational domain was three-dimensional and Large-eddy simulation (LES) was adopted. The initial and boundary conditions were defined using or referring to our wind tunnel experimental results. Prior to numerically simulating the interaction between the synthetic jets and the baseline flow, a numerical model for simulating the separation bubble was developed and verified. In the numerical model including the SJA, the synthetic jet velocity at the exit of the SJA was defined as an input. The numerical model was further verified by comparing the simulation with experimental results. Based on reasonable agreement between the numerical and experimental results, simulations were carried out to investigate the dependency of flow control using synthetic jets on the forcing frequency, focused on the lower frequency range of the Tollmien-Schlichting (T-S) instability, and on the forcing amplitude which was represented by the maximum jet velocity at the exit of the SJA. Supporting the hypothesis based on the experiment, LES results showed that the forcing frequency had stronger influence on SJA’s effective elimination of the separation bubble than the forcing amplitude did.  相似文献   

15.
Large Eddy Simulation (LES) is applied to the auto-ignition of an hydrogen jet issuing into a turbulent co-flowing air stream. A 19 step, 9 species detailed mechanism is used for modelling the chemical reactions. The influence of sub-grid fluctuations is accounted for by a sub-grid joint probability density function (PDF) for the reactive scalars. A Eulerian Stochastic Field method is used to solve the modelled form of the PDF transport equation. The model is able to reproduce ignition lengths and different regimes observed experimentally without adjustment of the sub-grid scale model parameters.  相似文献   

16.
Large eddy simulation (LES) has the potential to model complex separated flows, where Reynolds Averaged Navier–Stokes (RANS) based methods often fail. An important aspect of LES is specifying correlated turbulent fluctuations at the inlet boundary. This is particularly important in turbomachines, where turbulence length scale and intensity play a key role in the correct prediction of component performance.In this work, a method is implemented into an unstructured Computational Fluid Dynamics (CFD) solver to impose correlated turbulent fluctuations in a compressible form. It is shown that compressibility effects are particularly important in turbomachinery and must be taken into account. The method uses a pre-processing method to generate a cube of isotropic, homogeneous turbulence. The velocity fluctuations so obtained are used to determine a fluctuating Mach number in order to evaluate the instantaneous total pressure and temperature fluctuations at domain inlet. In the authors knowledge this is one of the first attempts to define correlated fluctuations in a compressible form.The method is successfully applied to two turbomachinery related flows. Firstly, the jet flow from a propelling nozzle is investigated. Following this, the flow over a low pressure (LP) turbine blade is predicted. Results from the LES simulations show that modifications to the inlet conditions can significantly affect flow development. For the jet, changes in the shear layer and peak shear stress are shown, important in the context of high frequency sideline noise generated by the jet. Despite what is suggested in the literature the differences in shear stresses are important also in a non-swirling jet.For the LP turbine, incoming turbulent fluctuations modify the onset of transition and the extent of separation bubble. Without imposed turbulence fluctuations, loss is overpredicted by up to 50%. Moreover it is important to use a compressible solver. Despite the fact that the majority of the results proposed in literature on LP turbine is using incompressible solvers, the difference in terms of pressure coefficient, Cp, is comparable to turbulence contribution.  相似文献   

17.
Large-scale structures typically observed at or above the logarithmic layer of fully developed turbulent channel flows were numerically studied. The potential validity of large eddy simulation (LES) to the large-scale analysis was focused on, and its applicability was investigated for the first time by carrying out an intensive grid resolution study to determine the minimum grid spacing necessary to properly capture such flows. It was found that rather fine grid spacing sufficient to resolve the near-wall streaky motions represented by is required to reproduce the typical spectral features of large structures in the outer layer. Subsequently, the Reynolds-number scaling for such structures and their interaction with buffer-layer turbulence were examined. It was observed that the large structures in the outer layer remarkably appear only in the streamwise velocity fluctuation, basically obeying the outer scaling, and their spanwise size is approximately twice as large as the boundary layer thickness, independent of the Reynolds-number range tested here. It was also found that they penetrate deep into the buffer layer, where small streaky structures obey the inner scaling. These results clearly demonstrate that mixed inner-outer scaling instead of simple inner scaling for the streamwise velocity root mean square in the near-wall region is reasonable.  相似文献   

18.
In this paper, a lattice-Boltzmann equation (LBE) with multi relaxation times (MRT) is presented for axisymmetric flows. The model is an extension of a recent model with single-relaxation-time [Guo et al., Phys. Rev. E 79, 046708 (2009)], which was developed based on the axisymmetric Boltzmann equation. Due to the use of the MRT collision model, the present model can achieve better numerical stability. The model is validated by some numerical tests including the Hagen-Poiseuille flow, the pulsatile Womersley flow, and the external flow over a sphere. Numerical results are in excellent agreement with analytical solutions or other available data, and the improvement in numerical stability is also confirmed.  相似文献   

19.
In many engineering and industrial applications the investigation of rotating turbulent flow is of great interest. Whereas some research has been done concerning channel flows with a spanwise rotation axis, only few investigations have been performed on channel flows with a rotation about the streamwise axis. In the present study an LES of a turbulent streamwise-rotating channel flow at Reτ = 180 is performed using a moving grid method. The three-dimensional structures and the details of the secondary flow distribution are analyzed and compared with experimental data. The numerical-experimental comparison shows a convincing agreement as to the overall flow features. The results confirm the development of a secondary flow in the spanwise direction, which has been found to be correlated to the rotational speed. Furthermore, the findings show the distortion of the main flow velocity profile, the slight decrease of the streamwise Reynolds stresses in the vicinity of the walls, and the pronounced increase of the spanwise Reynolds stresses at higher rotation rates near the walls and particularly in the symmetry region. As to the numerical set-up it is shown that periodic boundary conditions in the spanwise direction suffice if the spanwise extent of the computational domain is larger than 10 times the channel half width.  相似文献   

20.
LES of bubble dynamics in wake flows   总被引:1,自引:0,他引:1  
The results of large eddy simulations (LES) of turbulent bubbly wake flows are presented. The LES technique was applied together with the Lagrangian particle dynamics method and a random flow generation (RFG) technique to the cases of a two-phase bubbly mixing layer and the high-Reynolds number bubbly ship-wake flows. The validation was performed on the experimental data for the bubbly mixing layer. Instantaneous distributions and probability density functions of bubbles in the wake were obtained using a joint LES/RFG approach. Separate estimates of bubble decay due to dissolution and buoyancy effects were obtained. The analysis of bubble agglomeration effects was done on the basis of experimental data for a turbulent vortex to satisfy one-way coupling that is used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号