首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Research Bulletin》2006,41(7):1295-1302
Undoped and ZrO2 doped (0.5, 1.0, 2.0, 3.0 wt.%) Ba0.55Sr0.45TiO3/MgO composites were prepared by traditional ceramic processing. The ZrO2 doping effect on the structural, surface morphological, tunability and dielectric properties were systemically investigated. The result shows that the tunability of Ba0.55Sr0.45TiO3/MgO composites was improved by using ZrO2 dopant. The Ba0.55Sr0.45TiO3/MgO composite with 1.0 wt.% ZrO2 dopant exhibits high tunability (17% at 2.5 kV/mm), low dielectric constant (200) and a low microwave loss (0.005, 2.7 GHz), which are suitable for microwave tunable application.  相似文献   

2.
《Materials Letters》2006,60(9-10):1224-1228
Pure and 2 mol% Mn doped Ba0.6Sr0.4TiO3 (BST) thin films have been deposited on La0.67Sr0.33MnO3 (LSMO) coated single-crystal (001) oriented LaAlO3 substrates using pulsed-laser deposition technique. The bilayer films of BST and LSMO were epitaxially grown in pure single-oriented perovskite phases for both samples, and an enhanced crystallization effect in the BST film was obtained by the addition of Mn, which were confirmed by X-ray diffraction (XRD) and in situ reflective high energy electron diffraction (RHEED) analyses. The dielectric properties of the BST thin films were measured at 100 kHz and 300 K with a parallel-plate capacitor configuration. The results have revealed that an appropriate concentration acceptor doping is very effective to increase dielectric tunability, and to reduce loss tangent and leakage current of BST thin films. The figure-of-merit (FOM) factor value increases from 11 (undoped) to 40 (Mn doped) under an applied electric field of 200 kV/cm. The leakage current density of the BST thin films at a negative bias field of 200 kV/cm decreases from 2.5 × 10 4 A/cm2 to 1.1 × 10 6 A/cm2 by Mn doping. Furthermore, a scanning-tip microwave near-field microscope has been employed to study the local microwave dielectric properties of the BST thin films at 2.48 GHz. The Mn doped BST film is more homogeneous, demonstrating its more potential applications in tunable microwave devices.  相似文献   

3.
Gd2O3 (0–0.8 wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd2O3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd2O3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd2O3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd2O3, and the BNKT18 ceramics doped with 0.4 wt.% Gd2O3 have the highest piezoelectric constant (d33 = 137 pC/N), highest relative dielectric constant (εr = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd2O3 have the highest planar coupling factor (kp = 0.2463).  相似文献   

4.
《Materials Research Bulletin》2006,41(10):1845-1853
Phase formation and microwave dielectric properties of the Pb2+ and Sr2+ doped La4Ti9O24 ceramics were investigated. Using electron diffraction and Rietveld analysis of the X-ray powder diffraction patterns, we show that the increase in the concentration of Pb2+ and Sr2+ doping results in the structural transition from La4Ti9O24 to a La2/3TiO3-type phase (Ibmm, No. 74). A change in the crystalline phase considerably affects the microwave dielectric properties, increasing the ɛr from 37 to 130, reducing Q × f from 25,000 to 5500, and increasing temperature coefficient of the resonant frequency (TCF) from 15 to 300 ppm/°C.  相似文献   

5.
《Materials Research Bulletin》2004,39(4-5):629-636
The microstructures and the microwave dielectric properties of barium magnesium tantalate ceramics prepared by conventional mixed oxide route have been investigated. The prepared Ba(Mg1/3Ta2/3)O3 exhibited a mixture of cubic perovskite and a hexagonal superstructure with Mg and Ta showing 1:2 order in the B-site. It is found that low level doping of V2O5 (up to 0.5 wt.%) can significantly improve densification of the specimens and their microwave dielectric properties. The density of doped Ba(Mg1/3Ta2/3)O3 ceramics can be increased beyond 95% of its theoretical value by 1500 °C-sintering, which is caused by the liquid-phase effect of V2O5 addition. The detected second phase Ta2O5 was mainly the result of V5+ substitution in the ceramics. Dielectric constant (εr) and temperature coefficient of resonant frequency (τf) were not significantly affected, while the unloaded quality factors Q were effectively promoted by V2O5 addition due to the increase in B-site ordering. The εr value of 24.1, Q×f value of 149,000 (at 10 GHz) and τf value of 7.2 ppm/°C were obtained for Ba(Mg1/3Ta2/3)O3 ceramics with 0.25 wt.% V2O5 addition sintered at 1500 °C for 3 h.  相似文献   

6.
Er2O3 (0–0.8 wt.%)-doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state reaction method. The effects of Er2O3 on the microstructure and electrical properties were investigated. X-ray diffraction (XRD) data shows that Er2O3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of the BNKT18 ceramics and form the pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain sizes of BNKT18 ceramics decrease with the increase of Er2O3 content; in addition, the modified ceramics have the clear grain boundary and a uniformly distributed grain size. At room temperature, the electrical properties of the BNKT18 ceramics have been improved with the addition of Er2O3, and the BNKT18 ceramics doped with 0.6 wt.% Er2O3 have the highest piezoelectric constant (d33 = 138 pC/N), the highest planar coupling factor (kp = 0.2382), the highest remnant polarization (Pr = 25.2 μC/cm2), the higher relative dielectric constant (εr = 936) and lower dissipation factor (tanδ = 0.047) at a frequency of 10 kHz. Moreover, the Tm and Td of the samples increase with the addition of Er2O3.  相似文献   

7.
In this study, the effect of La2O3 nanoparticles (0, 0.01, 0.03, 0.05 and 0.1 wt.%) has been investigated in Sn–3.0Ag–0.5Cu (SAC-305) alloy. The various soldering properties have been tested, such as wettability, microstructural evolution, intermetallic compound formation, micro-hardness, tensile strength, and fracture analysis of tensile tested samples. La2O3 nanoparticles are added in the Sn–3.0Ag–0.5Cu alloy by mechanical mixing of powders and melting. The structural and morphological features of the samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electron probe micro-analyzer (EPMA). The experimental results indicate that the best combination of microstructural, wetting and tensile properties is obtained at 0.05 wt.% La2O3 in the solder matrix. The sample reinforced with 0.05 wt.% La2O3 i.e., SAC-0.05 La2O3 exhibits ~ 18% increase in microhardness, ~ 26% increase in the ultimate tensile strength (UTS), and ~ 14% elongation due to the adsorption of high surface energy of La2O3 nanoparticles in the matrix.  相似文献   

8.
《Materials Research Bulletin》2006,41(10):1972-1978
The effect of V2O5 addition on the microwave dielectric properties and the microstructures of 0.4SrTiO3–0.6La(Mg0.5Ti0.5)O3 ceramics sintered for 5 h at different sintering temperature were investigated systematically. It was found that the sintering temperature was effectively lowered about 200 °C by increasing V2O5 addition content. The grain sizes, bulk density as well as microwave dielectric properties were greatly dependent on sintering temperature and V2O5 content. The 4ST–6LMT ceramics with 0.25% V2O5 sintered at 1400 °C for 5 h in air exhibited optimum microwave dielectric properties of ɛr = 50.7, Q × f = 15049.6 GHz, Tf = −1.7 ppm/°C.  相似文献   

9.
《Materials Letters》2007,61(14-15):3093-3095
High dielectric constant and low loss ceramics in the system Ba3La2Ti2Nb2−xTaxO15 (x = 0–2) have been prepared by conventional solid-state ceramic route. Ba3La2Ti2Nb2−xTaxO15 solid solutions adopted A5B4O15 cation-deficient hexagonal perovskite structure for all compositions. The materials were characterized at microwave frequencies. They show a linear variation of dielectric properties with the value of x. Their dielectric constant varies from 49.8 to 45.1, quality factor Qu × f from 22,000 to 31,040 GHz and temperature variation of resonant frequency from + 6.9 to − 13.4 ppm/°C as the value of x increases. These low loss ceramics might be used for dielectric resonator (DR) applications.  相似文献   

10.
《Materials Letters》2006,60(25-26):3179-3182
In this study, we report the high dielectric constant lanthanum substituted barium titanate ceramic material for its possible applications at microwave frequencies. The microwave dielectric characterization of Ba6  3xLa8 + 2xTi18O54 solid solutions with 0.0  x  0.7 prepared by conventional mixed oxide route method has been carried out. The lattice parameters were obtained from the X-ray diffraction patterns. It was observed that lattice parameters increased with respect to an increase in the ‘La’ content. The crystal symmetry investigated was orthorhombic with space group of Pbam. From the evaluation of microwave dielectric properties of lanthanum doped barium titanate ceramics, it was observed that a maximum value of dielectric constant (ε′) = 157 and a minimum tangent loss (tanδ) = 0.0572 was obtained. The minimum value of a.c. conductivity (σa.c.) was observed to be 1.76e  07 S/m.  相似文献   

11.
《Materials Research Bulletin》2006,41(6):1127-1132
Microwave dielectric ceramics of tungsten–bronze-type BaSm2Ti4O12 were prepared by doping CuO (up to 2 wt.%) as the liquid-phase sintering aid. The effects of CuO additive on the densification, micro structure and dielectric properties were investigated. Due to the liquid-phase effect, the sintering temperature of BaSm2Ti4O12 ceramics with 1 wt.% CuO addition can be effectively reduced to 1160 °C, about 200 °C lower than that of pure BaSm2Ti4O12 ceramics, while good microwave dielectric properties of ɛr = 75.8, Q*f = 4914.6 GHz and τf = −7.65 ppm/°C were still achieved.  相似文献   

12.
Microwave dielectric ceramics ZnTa2O6 were prepared by conventional mixed oxide route. The effects of CaF2 addition on the microstructures and microwave dielectric properties of ZnTa2O6 ceramics were investigated. Formation of second phase can be detected at the high addition of CaF2 (0.5–1.0 wt.%). Variation of grain shapes were observed with CaF2 content increasing. The sintering temperature of CaF2-doped ZnTa2O6 ceramics can be effectively lowered from 1400 °C to 1225 °C due to liquid phase effect. The microwave dielectric properties were affected by the amount of CaF2 addition. At 1225 °C for 4 h, ZnTa2O6 ceramics with 0.25 wt.% CaF2 possesses excellent microwave dielectric properties: εr = 31.32, Q × ? = 73600 GHz(6.8 GHz) and τ? = ? 6.97 ppm/°C.  相似文献   

13.
Sr2Ce2Ti5O16 dielectric ceramics were prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics were investigated by X-ray diffraction and scanning electron microscopic methods. The Sr2Ce2Ti5O16 has a psuedocubic structure. It has ɛr of 113, unloaded quality factor (Qu × f) of 8000 GHz and temperature coefficient of resonant frequency of 306 ppm/°C. The effects of various dopants on the structure, microstructure and microwave dielectric properties of the material have been investigated. It is found that addition of small amount of dopants such as PbO, Al2O3, Nd2O3, MoO3, CeO2, La2O3, Fe2O3 and NiO improve the microwave dielectric properties of Sr2Ce2Ti5O16.  相似文献   

14.
《Materials Letters》2007,61(19-20):4188-4191
Microwave dielectric properties of novel lithium ion containing pyrochlore type oxides: Li3Sm3  xBixTi7Nb2O25 (x = 0, 1, 2 or 3) have been reported in this paper. Powder X-ray diffraction patterns show that these oxides have cubic pyrochlore type structure. Ceramic microstructure of the sintered samples show well formed grains. They have relatively high dielectric constant (εr) in the range 80–137 at 1 MHz and εr, 45–83 at the resonant microwave frequency region. It is seen that the dielectric constant (εr) increases with the increase of Bi content. The best microwave dielectric properties obtained for fully substituted samarium compound, Li3Sm3Ti7Nb2O25 are as follows: Q × f = 2007 and εr = 45 at the resonant microwave frequency, 3.78 GHz.  相似文献   

15.
In this study the transition metal doped La0.7Sr0.3Mn1?xTMxOδ (TM = Fe, Co or Ni, x = 0, 0.2) powders were fabricated by the conventional solid state reaction method. The compositions, morphologies and crystal structures were characterized using different method. The influences of the incorporation of TM into La0.7Sr0.3MnOδ on the complex permittivity, complex permeability and microwave absorption performance were investigated in the range of 5.85–18 GHz. It is found that the electromagnetic loss has been enhanced after TM doping. And the microwave absorption properties have been significantly improved. In present study La0.7Sr0.3Mn0.8Fe0.2Oδ had the best microwave absorption properties. The maximum reflection loss was 27.67 dB at 10.97 GHz, and the absorbing bandwidth above 6 dB was 6.80 GHz with 2 mm thickness.  相似文献   

16.
《Materials Letters》2007,61(4-5):1007-1010
Sb2O3-doped Ba0.672Sr0.32Y0.008TiO3 (BSYT) dielectric ceramics were prepared by conventional solid state method, and their dielectric properties were investigated with variation of Sb2O3 doping content and sintering temperature. The X-ray diffraction patterns indicated that all the BSYT specimens possessed the perovskite polycrystalline structure. The experimental results reveal that the introduction of Sb2O3 into Ba0.672Sr0.32Y0.008TiO3 can control the grain growth, reduce the relative dielectric constant and dielectric loss, shift the Curie temperature to lower temperature and significantly improve the thermal stability of the BSYT ceramics. The samples doped with 1.6 wt.% Sb2O3 sintered at 1320 °C for 2 h exhibited attractive properties, including high relative dielectric constant (> 1500), low dielectric loss (< 40 × 10 4), low temperature coefficient of capacitor(< ± 35%) over a wide temperature range from − 25 °C to + 85 °C.  相似文献   

17.
The origins of microwave dielectric properties (1 ? x)CaTiO3x(Li0.5La0.5)TiO3 (0.2  x  0.8) ceramics, prepared by a conventional solid-state reaction method, were investigated based on the theory of bond valence. The XRD and SEM results showed that complete solid solutions with orthorhombic perovskite structure were formed in the whole investigated compositional range. The dielectric constant (?r), quality factor (Q × f) and temperature coefficient of resonant frequency (τf) were closely related to B-site, A-site and the difference between A-site and B-site bond valences of ABO3 perovskite compounds, respectively. As x value increased from 0.2 to 0.8, the dielectric constant increased from 198.3 to 276.8, the Q × f value decreased from 4340 to 1880 GHz, and the τf value varied from +489.7 to ?178 ppm/°C. For practical applications, excellent microwave dielectric properties of ?r = 245, Q × f = 2750 GHz and τf = +0.75 ppm/°C were obtained for 0.4CaTiO3–0.6(Li0.5La0.5)TiO3 ceramics.  相似文献   

18.
Low thermal conductivity is one of the key requirements for thermal barrier coating materials. From the consideration of crystal structure and ion radius, La3 + Doped Yb2Sn2O7 ceramics with pyrochlore crystal structures were synthesized by sol–gel method as candidates of thermal barrier materials in aero-engines. As La3 + and Yb3 + ions have the largest radius difference in lanthanoid group, La3 + ions were expected to produce significant disorders by replacing Yb3 + ions in cation layers of Yb2Sn2O7. Both experimental and computational phase analyses were carried out, and good agreement had been obtained. The lattice constants of solid solution (LaxYb1  x)2Sn2O7 (x = 0.3, 0.5, 0.7) increased linearly when the content of La3 + was increased. The thermal properties (thermal conductivity and coefficients of thermal expansion) of the synthesized materials had been compared with traditional 8 wt.% yttria stabilized zirconia (8YSZ) and La2Zr2O7 (LZ). It was found that La3 + Doped Yb2Sn2O7 exhibited lower thermal conductivities than un-doped stannates. Amongst all compositions studied, (La0.5Yb0.5)2Sn2O7 exhibited the lowest thermal conductivity (0.851 W·m 1·K 1 at room temperature), which was much lower than that of 8YSZ (1.353 W·m 1·K 1), and possessed a high coefficient of thermal expansion (CTE), 13.530 × 10 6 K 1 at 950 °C.  相似文献   

19.
《Materials Research Bulletin》2013,48(11):4606-4613
The effect of Fe and Co doping on structural, electrical and thermal properties of half doped La0.5Ce0.5Mn1−x(Fe, Co)xO3 is investigated. The structure of these crystallizes in to orthorhombically distorted perovskite structure. The electrical resistivity of La0.5Ce0.5MnO3 exhibits metal-semiconductor transition (TMS at ∼225 K). However, La0.5Ce0.5Mn1−xTMxO3 (TM = Fe, Co; 0.0  x  0.1) manganites show semiconducting behavior. The thermopower measurements infer hole as charge carriers and electron–magnon as well spin wave fluctuation mechanism are effective at low temperature domain and SPC model fits the observed data at high temperature. The magnetic susceptibility measurement confirms a transition from paramagnetic to ferromagnetic phase. The observed peaks in the specific heat measurements, shifts to lower temperatures and becomes progressively broader with doping of transition metals on Mn-site. The thermal conductivity is measured in the temperature range of 10–350 K with a magnitude in between 10 and 80 mW/cm K.  相似文献   

20.
Present work introduces a new kind of microwave dielectric ceramic, Ba4Ti3P2O15. Ba4Ti3P2O15 ceramic can be prepared by solid state reaction method and be well densified after being sintered at above 1175 °C for 4 h in air. All the XRD patterns can be fully indexed as single-phase structure. The best microwave dielectric properties can be obtained in ceramic sintered at 1200 °C for 4 h with permittivity about 20.7, Q × f about 42,210 GHz and TCF about 37 ppm °C?1. Measurements of the microwave dielectric properties of Ba4Ti3P2O15 ceramic revealed the existence of a maximum in the temperature dependence of the dielectric loss because of the defect dipoles relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号