首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了基于AdaBoost的多神经网络集成预测方法。集成方法的预测结果优于其他方法的预测结果,这一点在理论上和经验上已经得到证明。AdaBoost是适用于时间序列预测的集成方法。基于AdaBoost算法,采用多个BP神经网络训练随机生成的风速样本,再由多个训练结果生成最终的风速预测值。用该方法预测的误差低于用单一BP神经网络进行的预测,其分析和仿真结果表明了其优越性。  相似文献   

2.
针对光伏发电系统的输出功率具有出力波动和随机性的问题,提出一种基于最大偏差相似准则的CGA-BP神经网络的光伏发电预测模型.模型引入混沌序列初始化种群,利用最大偏差相似性算法对GA算法进行改进,将优化后的GA模型对BP神经网络进行优化.仿真结果表明,该模型与其他模型进行比较,具有较高的预测精度和准确性.  相似文献   

3.
介绍了风电功率预测的背景,对风电功率预测进行了理论分析,分析了BP神经网络的原理及基于BP神经网络的风电功率预测流程和预测结果误差的评价指标。以Matlab软件的神经网络工具箱为仿真平台,搭建BP神经网络,进行了功率预测仿真,预测结果均方根误差分别为6.97%、200.59%。两组仿真对比结果表明,基于BP神经网络的风电功率预测在短期预测中是可行的.  相似文献   

4.
风力发电的不可控性,给电网带来了很多问题,所以当前迫切需要一种高精度的风力发电预测系统.对此,提出了一种结合量子遗传算法和BP神经网络的预测方法,通过量子遗传算法优化BP神经网络的权值和阈值.最后通过MATLAB试验仿真,验证了该方法可有效提高风功率的准确性.  相似文献   

5.
风电功率预测对于风电场和电网的安全可靠运行具有重要意义。以某风力发电机为研究对象,根据该风机历史天气信息和风电功率数据,使用遗传算法改进BP神经网络,构建复合型神经网络的风电功率预测系统。运用MATLAB软件对算法进行编程与仿真,仿真结果表明,单一的BP神经网络预测系统波动性较高,精度不足,而复合型的神经网络算法有效地解决了这一问题,改进后的预测系统精度较高、稳定性较强,满足工业生产需求。  相似文献   

6.
基于自适应差分进化和BP神经网络的光伏功率预测   总被引:1,自引:0,他引:1  
针对光伏功率的波动性和间歇性,通过分析光伏发电的影响因素,建立了基于自适应差分进化和BP神经网络的光伏功率预测模型.该模型利用自适应差分进化算法优化BP神经网络的权重阈值,克服了BP算法收敛速度慢、容易陷入局部极值的缺点.利用光伏电站的历史数据和气象观测站的气象数据,对预测模型进行训练和光伏功率预测.结果表明,基于自适应差分进化和BP神经网络的模型预测精度高于BP神经网络模型,验证了所提模型和算法的有效性和可行性.  相似文献   

7.
随着光伏并网容量的增加,光伏发电功率的波动对电网调度运行的影响不容忽视,电网对光伏发电功率预测精度提出了更高要求。在分析了光伏发电功率波动影响因素的基础上,基于BP神经网络建立光伏发电功率预测模型。通过大唐吐鲁番光伏发电实测数据验证该方法,预测结果 RMSE为3.544,表明该方法可以准确预测光伏发电功率。  相似文献   

8.
随着神经网络理论在电力行业应用不断广泛和深入,神经网络用于电力负荷预测也取得一定成果。为了减小负荷预测的误差,提高预测精度,将BP神经网络引入电站负荷预测,首先介绍了电力负荷传统预测方法,进而引出了人工神经网络预测方法,分析了BP神经网络原理、模型及算法,通过m语言在MATLAB中建立了负荷预测模型,对实际电站数据进行了仿真分析,得到了训练误差曲线,验证了BP神经网络应用于负荷预测满足一般精度的要求,从而改进了传统方法带来的误差,使预测结果接近实际值。  相似文献   

9.
张超  常太华  刘欢  胡阳 《华东电力》2012,(8):1412-1414
指出风速预测对并网风力发电系统的运行有重要意义。为提高风速预测精度,提出了一种基于改进的Elman神经网络风速预测方法,利用误差反向传播的方法来确定反馈增益γ值。分别采用改进Elman神经网络与BP神经网络建立模型,对实际历史风速数据进行仿真预测。利用风电厂实际数据验证,并阐述了仿真结果。  相似文献   

10.
基于风速历史数据统计法和基于地理信息与数值预报的物理方法都不能经济、有效、准确地对超短期风速做出预测。为了满足超短期风速预测的时效性和准确性,提出了基于风速历史数据和周边风速数据的风速时空信息BP神经网络超短期风速预测的思想,并研究了基于风速时空信息BP神经网络风速预测模型。建立基于MATLAB平台的BP神经网络预测程序,并实例验证了基于风速时空信息BP神经网络风速预测方法具有更高的精确度、时效性和经济性。  相似文献   

11.
由于短期电力负荷、用电量受众多复杂的非线性因素影响,传统单一BP神经网络预测方法存在精度不高、收敛速度慢等问题。为了提高收敛速度和预测精度,根据影响因素特性将其分为长期、短期性影响因素,根据负荷、用电量曲线特性分别将其分为基准量和敏感量,并用决定系数法确定所需短期影响因素。应用遗传算法对BP神经网络的初始权值和阈值进行优化,将BP神经预测误差作为遗传算法的适应度函数,建立了基于特性分析的改进BP神经网络短期电力预测方法。选取中部某省2015—2019五年"迎峰度冬"期间数据进行验证,结果表明,该预测方法的精度和收敛速度都得到了提高。  相似文献   

12.
介绍了光伏电池的特性,提出了一种基于BP神经网络的最大功率跟踪的控制策略,并进行了仿真试验。结果表明,该方法能够快速、准确地跟踪光伏电池的最大功率点,具有较好的控制精度,从而提高了电能的转换效率。  相似文献   

13.
吴俊利  张步涵  王魁 《电网技术》2012,36(9):221-225
进行较准确的风速预测对含大规模风电场的电力系统进行经济调度具有重要意义。针对目前神经网络法、时间序列法、卡尔曼滤波法等算法在短期风速预测上精度不高的缺陷,引入Adaboost算法对前馈(back propagation,BP)神经网络算法进行改进,提出了基于Adaboost的BP神经网络算法,并将该方法应用于短期风速预测。经算例分析,该算法在超前1 h和2 h的风速预测精度优于其他2种算法,且该算法在高风速段(10 m/s以上)平均绝对百分比误差低于7.5%,具有较高的工程应用价值。  相似文献   

14.
为了提高太阳能的利用率,应使光伏阵列时刻都工作在最大功率点上。提出分别利用BP神经网络法与灰色BP神经网络法对最大功率点进行跟踪,对给定参数的光伏电池特性进行仿真分析,对建立好的BP神经网络通过Matlab编程进行训练,得到最优的训练系数,从而可以得到给定参数的光伏电池的最大功率点跟踪模型;计算出跟踪误差,再结合灰色预测方法对误差进行校正,进而得出误差较小的预测模型和最大功率点跟踪模型。计算结果表明,基于灰色BP神经网络法对最大功率点的跟踪迅速、准确。  相似文献   

15.
光伏电站输出功率对电网调度有很大影响,但受到太阳辐射强度和气象因素的影响,光伏电站输出功率具有随机性和不可控性。为合理利用光伏发电系统,建立一种基于气象预测信息以及BP神经网络的光伏电站输出功率预测模型。通过相关性分析确定影响光伏出力的影响因子,结合历史数据和气象因素进行模型训练和功率预测。文中主要提出一种新的预测模型-双层BP神经网络模型,通过对某光伏电站预测结果与实测值对比,结果表明该方法能有效提高光伏电站输出功率预测精度,对发电计划的制定有较好的参考价值和实用价值。  相似文献   

16.
由于风电的高度波动性和随机性,大规模的风电功率预测已成为制约中国风电发展的瓶颈。提出一种针对小采样间隔的风电功率数据的多维时间序列BP神经网络预测模型。通过对原始风电功率序列进行处理得到不同时间维度的风电功率均值序列进而组成多维时间序列,采用改进的嵌入维最小预测误差法求取多维时间序列相空间重构时间延迟和嵌入维,利用重构相空间中预测点的近邻点建立BP神经网络预测模型。以实际风电场数据进行验证,证明了该模型可以有效处理风电功率预测问题,算法耗时减少了约9s,同时显著提高预测精度约18.94%。  相似文献   

17.
冯楠  王振臣  胖莹 《电源技术》2011,35(12):1586-1588
为了对纯电动汽车的电池剩余电量进行准确的预测,在分析了影响电池剩余容量的多种因素后,应用了BP神经网络建立了电池模型,并应用遗传算法对其权值阈值进行了优化.最后,用MATLAB编写了仿真程序进行了多组数据的测试,并与纯BP网络进行了对比,结果表明,优化后的网络具有训练时间短,精度高的特点,对电池容量的预测是有效的.  相似文献   

18.
基于BP神经网络和遗传算法的年负荷预测与分析   总被引:1,自引:0,他引:1  
建立BP(Back Propagation)神经网络与遗传算法相结合的电力负荷预测模型。在该模型中,利用遗传算法具有的全局寻优特点,将BP网络的初始权值优化到一个较小的范围,然后再用BP算法在该范围内继续优化,以便使优化算法既能实现全局最优求解,又能获得较快的求解速度。最后,通过仿真算例,与传统BP网络优化结果、及各种拟合方法获得结果进行比对,验证了计算方法的可行性和优越性。  相似文献   

19.
对紧急情况下的电力系统做到快速预警且提供相应的应急预案,是一个急需解决的重要课题。从电力系统防灾容灾预警机制出发,针对电网故障的时空分布特性,采用BP神经网络对其安全隐患进行识别,构建了基于季节气候、地形地貌及自然灾害等影响电力系统安全状态的预警系统,并通过吉林电网常见故障对该系统的实用性进行了有效验证。  相似文献   

20.
提出了相似日和动量优化BP神经网络的光伏短期功率预测方法,采用与输出功率强相关的辐照度作为相似变量选取相似日,通过动量法优化并以相似日历史数据和气象信息作为训练样本建立BP神经网络预测模型。以新疆某光伏电站的实际运行数据进行验证分析,结果表明该方法在晴天和非晴天天气环境下能够达到预测精度,验证了所提模型和算法的准确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号