共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
介绍了风电功率预测的背景,对风电功率预测进行了理论分析,分析了BP神经网络的原理及基于BP神经网络的风电功率预测流程和预测结果误差的评价指标。以Matlab软件的神经网络工具箱为仿真平台,搭建BP神经网络,进行了功率预测仿真,预测结果均方根误差分别为6.97%、200.59%。两组仿真对比结果表明,基于BP神经网络的风电功率预测在短期预测中是可行的. 相似文献
4.
5.
风电功率预测对于风电场和电网的安全可靠运行具有重要意义。以某风力发电机为研究对象,根据该风机历史天气信息和风电功率数据,使用遗传算法改进BP神经网络,构建复合型神经网络的风电功率预测系统。运用MATLAB软件对算法进行编程与仿真,仿真结果表明,单一的BP神经网络预测系统波动性较高,精度不足,而复合型的神经网络算法有效地解决了这一问题,改进后的预测系统精度较高、稳定性较强,满足工业生产需求。 相似文献
6.
7.
8.
随着神经网络理论在电力行业应用不断广泛和深入,神经网络用于电力负荷预测也取得一定成果。为了减小负荷预测的误差,提高预测精度,将BP神经网络引入电站负荷预测,首先介绍了电力负荷传统预测方法,进而引出了人工神经网络预测方法,分析了BP神经网络原理、模型及算法,通过m语言在MATLAB中建立了负荷预测模型,对实际电站数据进行了仿真分析,得到了训练误差曲线,验证了BP神经网络应用于负荷预测满足一般精度的要求,从而改进了传统方法带来的误差,使预测结果接近实际值。 相似文献
9.
10.
11.
由于短期电力负荷、用电量受众多复杂的非线性因素影响,传统单一BP神经网络预测方法存在精度不高、收敛速度慢等问题。为了提高收敛速度和预测精度,根据影响因素特性将其分为长期、短期性影响因素,根据负荷、用电量曲线特性分别将其分为基准量和敏感量,并用决定系数法确定所需短期影响因素。应用遗传算法对BP神经网络的初始权值和阈值进行优化,将BP神经预测误差作为遗传算法的适应度函数,建立了基于特性分析的改进BP神经网络短期电力预测方法。选取中部某省2015—2019五年"迎峰度冬"期间数据进行验证,结果表明,该预测方法的精度和收敛速度都得到了提高。 相似文献
12.
介绍了光伏电池的特性,提出了一种基于BP神经网络的最大功率跟踪的控制策略,并进行了仿真试验。结果表明,该方法能够快速、准确地跟踪光伏电池的最大功率点,具有较好的控制精度,从而提高了电能的转换效率。 相似文献
13.
基于Adaboost的BP神经网络改进算法在短期风速预测中的应用 总被引:2,自引:0,他引:2
进行较准确的风速预测对含大规模风电场的电力系统进行经济调度具有重要意义。针对目前神经网络法、时间序列法、卡尔曼滤波法等算法在短期风速预测上精度不高的缺陷,引入Adaboost算法对前馈(back propagation,BP)神经网络算法进行改进,提出了基于Adaboost的BP神经网络算法,并将该方法应用于短期风速预测。经算例分析,该算法在超前1 h和2 h的风速预测精度优于其他2种算法,且该算法在高风速段(10 m/s以上)平均绝对百分比误差低于7.5%,具有较高的工程应用价值。 相似文献
14.
为了提高太阳能的利用率,应使光伏阵列时刻都工作在最大功率点上。提出分别利用BP神经网络法与灰色BP神经网络法对最大功率点进行跟踪,对给定参数的光伏电池特性进行仿真分析,对建立好的BP神经网络通过Matlab编程进行训练,得到最优的训练系数,从而可以得到给定参数的光伏电池的最大功率点跟踪模型;计算出跟踪误差,再结合灰色预测方法对误差进行校正,进而得出误差较小的预测模型和最大功率点跟踪模型。计算结果表明,基于灰色BP神经网络法对最大功率点的跟踪迅速、准确。 相似文献
15.
光伏电站输出功率对电网调度有很大影响,但受到太阳辐射强度和气象因素的影响,光伏电站输出功率具有随机性和不可控性。为合理利用光伏发电系统,建立一种基于气象预测信息以及BP神经网络的光伏电站输出功率预测模型。通过相关性分析确定影响光伏出力的影响因子,结合历史数据和气象因素进行模型训练和功率预测。文中主要提出一种新的预测模型-双层BP神经网络模型,通过对某光伏电站预测结果与实测值对比,结果表明该方法能有效提高光伏电站输出功率预测精度,对发电计划的制定有较好的参考价值和实用价值。 相似文献
16.
由于风电的高度波动性和随机性,大规模的风电功率预测已成为制约中国风电发展的瓶颈。提出一种针对小采样间隔的风电功率数据的多维时间序列BP神经网络预测模型。通过对原始风电功率序列进行处理得到不同时间维度的风电功率均值序列进而组成多维时间序列,采用改进的嵌入维最小预测误差法求取多维时间序列相空间重构时间延迟和嵌入维,利用重构相空间中预测点的近邻点建立BP神经网络预测模型。以实际风电场数据进行验证,证明了该模型可以有效处理风电功率预测问题,算法耗时减少了约9s,同时显著提高预测精度约18.94%。 相似文献
17.
18.
19.