首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the J concept, information is reported about the crack resistance behaviour up to 8 mm crack growth of side-grooved CT-25 as well as CCT-25 specimens made from German standard steel StE 460. Numerical simulations controlled by JR curves make the calculation of J from the stresses and strains of specimen models during large crack growth feasible. These data allow a comparison to standards and rules describing the evaluation of J from experiments. Using stress, strain and displacement fields from a plane-strain finite-element analysis, the extended J concept is discussed concerning larger ductile crack growth. Additionally, the distribution of other fracture mechanics parameters such as the crack tip opening displacement (CTOD) and the crack tip opening angle (CTOA) are presented for larger crack growth.  相似文献   

2.
The effect of hydrogen on the fracture behaviour of a Zircaloy-4 alloy was analysed performing simultaneous fracture mechanics tests of small SE(B) specimens and in situ observation of crack initiation and propagation inside the chamber of a scanning electron microscope. Load and displacement were continuously measured and JIC, J-R curves and CTOD determinations were obtained. Detailed images of the zone close to the crack tip were taken and the resistance to crack growth was correlated with hydrogen content and hydride morphology. The size and orientation of hydride precipitates showed an important influence on the fracture process. A good agreement with results obtained using standard CT specimens was met.  相似文献   

3.
The criteria based on cohesive zone model (CZM) and CTOD/CTOA have been employed for analysis of stable crack growth (SCG) through AISI 4340 steel. Investigations have been reported first concerning characterization of mode I SCG using the CZM and a particular crack size in a CT specimen 8 mm thick. The characteristic data is then verified considering other mode I crack sizes and the same specimen geometry. Similar verifications have also been done considering cracks under mixed mode (I and II) loading. The same mode I cases have been studied later considering some variations of crack tip opening displacement/angle (CTOD/CTOA) with crack extension. Load-load-line displacement (LLD) predictions based on these two approaches have been compared with experimental results reported in the literature. The predictions based on the CZM are found to be closer to the experimental results. The results include the traction-separation law suitable for characterization of SCG through AISI 4340 steel under mode I and mixed mode (I and II). Similarly a CTOD/CTOA variation with crack extension for the similar purpose under only mode I loadings has been reported. Other observations on modeling of crack tip constraint effects by mixed (plane strain core plus plane stress outer domain) discretisation scheme, crack tip element size and J integral, are presented.  相似文献   

4.
Low ductility failure of zircaloy tubing due to iodine-induced stress corrosion cracking (SCC) can occur up to about 700°C. The time-to-failure behavior of Zircaloy-4 cladding tubes containing iodine has been described by the elastic-plastic fracture mechanics model CEPFRAME for the temperature region 500 to 700°C. The model includes an empirically-determined computation method for the incubation period of crack formation, as a portion of the time-to-failure, as well as an elastic-plastic model for describing crack growth due to iodine-induced SCC. The total life time of the cladding tube is obtained by adding the crack initiation and crack propagation periods. The incubation period is a temperature-dependent function of both the depth of surface damage (both fabrication pits and machined notches) and the applied load, and is 40 to 90% of the time-to-failure. The elastic-plastic crack growth model is a modified version of the stress intensity KI-concept of linear-elastic fracture mechanics. The extensions of this concept take into account a plastic strain zone ahead of the crack tip, which effectively increases the crack depth, and in addition, a dynamic correction factor for the crack geometry which is essentially a function of the effective crack depth. Unstable crack growth is predicted to occur when the residual cross section reaches plastic instability.Model results show good agreement with experimental data of tube burst tests at 500, 600, and 700°C. The crack growth velocity at all three temperatures is a power function of stress intensity ahead of the crack tip; the exponent is 4.9. The model can estimate time-to-failure of as-received cladding tubes containing iodine within a factor of 2. Application of the model to temperatures below 500°C is possible in principle. Due to the increasing scatter in experimental data, the structural transformation of the cladding by recrystallization, and the growing importance of creep strain, CEPFRAME has an upper temperature limit of approximately 650°C. The model is suitable for use in computer codes describing LWR fuel rod behavior during reactor transients and accidents.  相似文献   

5.
Plastic fracture mechanics techniques have been developed to treat the regime where extensive plastic deformation and stable crack growth occur prior to fracture instability in the tough ductile materials used in nuclear systems. As described in this paper, a large number of crack tip parameters can be used in a plastic fracture resistance curve approach. However, applications using the J-integral currently predominate. This parameter has significant advantages. It offers computational ease and can provide a lower bound estimate of the fracture condition. But, J also has a disadvantage in that only a limited amount of stable crack growth can be accommodated. The crack tip opening angle parameter, in contrast, can be valid for extensive stable crack growth. But, with it and most other realistic alternatives, the computational convenience associated with the J-integral is lost and finite element or other numerical methods must be employed. Other possibilities such as the two-criterion approach and the critical net section stress are also described in the paper. In addition, current research work focussed upon improving the theoretical basis for the subject is reviewed together with related areas such as dynamic plastic analyses for unstable crack propagation/arrest and creep crack growth at high temperatures. Finally, an application of plastic fracture mechanics to stress corrosion cracking of nuclear piping is made which indicates the possible anti-conservative nature of the current linear elastic assessments.  相似文献   

6.
The chemical environment associated with iodine-induced SCC failure of Zircaloy-4 tubing above 500°C has been characterized. At the critical iodine concentrations which result in SCC initiation and propagation, most of the iodine is present as condensed zirconium subiodides (I/Zr ? 0.4). Only a small part of the iodine remains in the gas phase as ZrI4. The gaseous ZrI4 is probably responsible for crack initiation and propagation. The critical ZrI4 pressures for SCC failure have been estimated in zircaloy/iodine reaction experiments performed with unstressed zircaloy tube specimens. These pressures were confirmed in additional creep rupture tests conducted under controlled ZrI4 partial pressure conditions. The estimated critical ZrI4 pressure above which low-ductility SCC failure of the zircaloy tubing always occurs, independent of time-to-failure, varies between 0.005 bar at 550°C and 0.043 bar at 800°C. Below the critical values, however, a rather wide range of ZrI4 pressures is associated with the onset of the SCC, especially at temperatures below 800°C. A comparison of the experimental results with available thermochemical data in the Zr-I system indicates that the main reaction involved during crack propagation is chemisorption of iodine-containing species on the fresh zircaloy surfaces created by metal straining at the crack tip.  相似文献   

7.
In the design assessment of fast reactor plant components, prevention of crack initiation from defect-free structures is a main concern. However, existence of initial defects such as weld defects cannot be entirely excluded and this potential cracks are to be evaluated to determine if initiated cracks do not lead to component failure instantly. Therefore, evaluation of structural integrity in the presence of crack-like defects is also important to complement the formal design assessment. The authors have been developing a guideline for assessing long-term structural integrity of fast reactor components using detailed inelastic analysis and nonlinear fracture mechanics. This guideline consists of two parts, evaluation of defect-free structures and flaw evaluation. In the latter, creep-fatigue is considered to be one of the most essential driving force for crack propagation at high operating temperature exceeding 500 °C. The uses of J-integral-type parameters (fatigue J-integral range and creep J-integral) are recommended to describe creep-fatigue crack propagation behavior in the guideline. This paper gives an outline of the simplified evaluation method for creep-fatigue crack propagation.  相似文献   

8.
Four wide plate specimens manufactured in A533B Class I, 90 mm thick by 500 mm wide containing through-thickness or semi-elliptical surface fatigue cracks were tested at +70°C. These specimens were subjected to a series of increasing applied loads, each of 100 h duration, until failure. Testing was performed using a computer interactive 40 MN load controlled tensile testing rig. Values of the fracture toughness parameters J and crack tip opening displacement (CTOD) were derived from the recorded values of applied load, plate extension and crack mouth opening displacement.The influence of loading rate, degree of yield containment and crack orientation on the time dependent behaviour is assessed and compared with data obtained from wide plate and bend tests under monotonic loading and from bend tests conducted with a variable loading rate, with hold periods, under crack mouth opening control. Interpretation of the results provides a clearer understanding of low temperature time dependent ductile crack extension and enables the identification of the conditions under which this phenomenon is apparent, to allow the necessary adjustments to failure assessments.  相似文献   

9.
The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation.Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.  相似文献   

10.
In order to investigate effects of intermetallic particles on SCC initiation of zirconium alloys, tensile tests were conducted in an iodine atmosphere using zirconium plates with different amounts of impurities, and Zircaloy-2 plates.SCC susceptibility of zirconium increased significantly with its iron content. Even small amounts of iron could form the intermetallic compound ZrFe2 whose particle size and number increased with iron content. In the case of Zircaloy-2, two different types of ternary compounds were detected, namely Zr(CrFe)2 and Zr2(NiFe). Metallographic examinations showed that the particles located at grain boundaries were important sites of SCC initiation in zirconium alloys. The initiation probability increased significantly with the amount of the particles, which supported the strong correlation between SCC susceptibility of zirconium and its iron content.  相似文献   

11.
The paper presents the results of a theoretical investigation whose objective has been to see whether there are advantages to be gained from using the modified J-integral in procedures for estimating the critical crack length for CANDU pressure tubes. For typical operation conditions, and with irradiated tubes having critical crack lengths over a wide range, it is shown that the slope of the modified J-integral JM-Δa crack growth resistance curve for a pressure tube crack is only marginally greater than the slope of the corresponding deformation J-integral JD-Δa curve; the results are expressed in terms of the parameter Z*, which is dJM/da − dJD/da and the parameter Q, which is the fractional difference between dJM/da and dJD/da. In the light of these findings, there would appear to be little advantage to be gained in using JM, rather than JD, as a characterizing parameter for crack growth in a CANDU pressure tube.  相似文献   

12.
A fracture mechanics approach to interpreting iodine-vapor stress-corrosion cracking in unirradiated Zircaloy-4 tubing is presented in which crack velocities are related to the fourth power on the stress intensity factor, KI. The crack growth power law on KI is shown to predict well the time-to-failure in internally pressurized Zircaloy-4 tubing at 360 and 400°C reported by Busby, Tucker and McCauley. The temperature dependency on iodine stress corrosion cracking in Zircaloy can be described by an Arrhenius-type equation in which the activation energy Q for recrystallized and cold-reduced Zircaloy was determined to be 42.9 and 35.9 kcal/mole, respectively. It is concluded that the geometry of the initial surface flaw, through its attendant elastic stress field, is directly responsible in controlling the SCC time-to-failure, cold working having a relatively small effect on increasing the susceptibility to SCC. The effects of neutron flux on iodine stress corrosion cracking of Zircaloy-4 tubing in-reactor are still unknown.  相似文献   

13.
A series of experiments were performed in order to clarify the surface crack growth behavior under creep-fatigue condition. Type 304 stainless steel was tested at 550°C and 650°C. Specimens were plates with a surface notch. Loading patterns were axial fatigue, bending fatigue, axial creep-fatigue and bending creep-fatigue. As results were obtained: (1) the beach mark method was available to measure the changes of the crack front shape after the test; (2) the electrical potential method was available to measure the changes of the crack front shape in real time; (3) the crack front shape was affected by the loading mode; and (4) ΔJ and ΔJc calculated from the proposed simplified method could characterize the surface crack growth rate.  相似文献   

14.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

15.
The J-integral method cannot be applied to the elastic plastic dynamic crack propagation, because unloading and inertia force may take place. From this point of view dynamic elastic plastic scheme using J-integral is developed.Using this dynamic finite element program an MRL type specimen is analyzed. As the result, the property of path-independence of the J-integral under the existence of inertia force and unloading is confirmed. Dynamic effects are considerably small in the MRL type specimen. Also the influence of plastic zone on the crack arrest toughness is shown.Finally the present result is compared with the request of ASTM 2nd round robin test program for crack arrest toughness.  相似文献   

16.
Hydrogen embrittlement is one of the major degradation mechanisms for high burnup fuel cladding during reactor service and spent fuel dry storage, which is related to the hydrogen concentration, morphology and orientation of zirconium hydrides. In this work, the J-integral values for X-specimens with different hydride orientations are measured to evaluate the fracture toughness of Zircaloy-4 (Zry-4) cladding. The toughness values for Zry-4 cladding with various percentages of radial hydrides are much smaller than those with circumferential hydrides only in the same hydrogen content level at 25 °C. The fractograghic features reveal that the crack path is influenced by the orientation of zirconium hydride. Moreover, the fracture toughness measurements for X-specimens at 300 °C are not sensitive to a variation in hydride orientation but to hydrogen concentration.  相似文献   

17.
Stress corrosion cracking (SCC) of the welded joints in a reactor core shroud is the primary result of the residual stresses caused by welding, corrosion and neutron irradiation in a boiling water reactor (BWR). Therefore, the evaluation of SCC propagation is important for the safe maintenance of the core shroud. This paper attempts to predict the remaining life of the core shroud due to SCC failures in BWR conditions via SCC propagation time calculations. First, a two-dimensional finite element method model containing H6a girth weld in the core shroud was constructed, and the weld processing was simulated to determine the weld's residual stress distribution. Second, using a basic weld residual stress field, the SCC propagation was simulated using a node release option and the stress redistribution was calculated. Combined with the J-integral method, the stress intensity factors were calculated at depths of 2, 3, 4, 8, 12, 16, 19, 22, 25 and 30 mm in the crack setting inside the core shroud; then, the SCC propagation rates were determined using the relation between the SCC propagation rate and the stress intensity factor. The calculations show that the core shroud could safely remain in service after 9.29 years even when a 1-mm-deep SCC has been detected.  相似文献   

18.
This contribution describes a method for the determination of the J-integral as a function of the load-line displacement for arbitrary specimen geometries.A correspondence could be found between the approximation method and the results determining with the Rice integral by means of a FE-calculation. Using the initiation values of the J-integral as a fracture mechanics parameter determined from the JR-curve, correspond with failure values of double-édged notched tensile specimens and circumferentially notched round tensile specimens of which crack initiation was tantamount to instability. Consequently, it could be proved that the J-integral is a transferable parameter that may be ascertained from simple determinable deformation values. The application to real components seems to be promising, due to these good results.  相似文献   

19.
Bimaterial CT specimens are numerically analyzed in the elastic-plastic states. By changing the material constants and the distance between the crack tip and the phase boundary, the parametric analyses are conducted. J integral evaluated by the line integration is compared with that obtained by the empirical formula by Merkel-Corten. The effects of the inhomogeneities on the accuracy of the J integral evaluation are discussed. Next the stable crack growth analyses are conducted. Using the relation between a and load-load line displacement obtained experimentally, the generation phase analyses are carried out. J integral, T* integral and CTOA are evaluated and the effects of the fusion line are discussed.  相似文献   

20.
Ontario Hydro has developed a leak before break (LBB) approach for application to the large diameter heat transport piping for Darlington NGS A as an alternative to the provision of pipewhip restraints. This approach has been applied to pipe sizes which are equal to or greater than 530 mm (21 in. NPS). The proposed LBB approach incorporates assessments at several levels to provide assurance against catastrophic rupture. A comprehensive and systematic review of pipe failure mechanisms is considered the first important step in establishing role and applicability of the LBB concept. The elements integral to the approach are those related to demonstration of crack stability utilizing fracture mechanics methods and those related to leak rate predictions and leakage detection capability. For evaluation of crack stability the J-integral/tearing modulus (J/T) method has been selected. Results from an extensive material test program from actual heat transport piping, forgings, associated welds and heat affected zones as inpur to EPFM analyses provide the J-resistance and JT curves. The details of EPFM analyses for a straight pipe with a circumferential crack and a piping elbow with a central longitudinal throughwall crack are presented here. Additionally, results of crack opening detail, the effects of crack face pressure, the predictions of LEAK RATE code and an assessment of the leakage detection capability are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号